6.已知函數(shù)f(x)=1-2sin2x在點$({\frac{π}{4},f({\frac{π}{4}})})$處的切線為l,則直線l、曲線f(x)以及直線$x=\frac{π}{2}$所圍成的區(qū)域的面積為$\frac{π^2}{16}-\frac{1}{2}$.

分析 先利用二倍角公式化簡函數(shù)f(x)的解析式,利用導數(shù)求出切線的斜率,然后求出切點的坐標,得出切線的方程,最后根據(jù)定積分即可求出直線l、曲線f(x)以及直線x=$\frac{π}{2}$所圍成的區(qū)域的面積.

解答 解:由f(x)=1-2sin2x=cos2x,
得f′(x)=-2sin2x.
∴f′($\frac{π}{4}$)=-2sin$\frac{π}{2}$=-2,
又f($\frac{π}{4}$)=cos$\frac{π}{2}$=0,
∴直線l的方程為y-0=-2(x-$\frac{π}{4}$),即y=-2x+$\frac{π}{2}$.
如圖:
∴直線l、曲線f(x)以及直線x=$\frac{π}{2}$所圍成的區(qū)域的面積為:
${∫}_{\frac{π}{4}}^{\frac{π}{2}}(cos2x+2x-\frac{π}{2})dx$=($\frac{1}{2}sin2x+{x}^{2}-\frac{π}{2}x$)${|}_{\frac{π}{4}}^{\frac{π}{2}}$
=$\frac{{π}^{2}}{16}-\frac{1}{2}$.
故答案為:$\frac{π^2}{16}-\frac{1}{2}$.

點評 本題主要考查了利用導數(shù)研究曲線上某點切線方程,同時考查了定積分,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知數(shù)列{an}和{bn},其中an=n2,n∈N*,{bn}的項是互不相等的正整數(shù),若對于任意n∈N*,{bn}的第an項等于{an}的第bn項,則$\frac{lg(_{1}_{4}_{9}_{16})}{lg(_{1}_{2}_{3}_{4})}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在平面直角坐標系xOy中,已知點P(0,1)在圓C:x2+y2+2mx-2y+m2-4m+1=0內(nèi),若存在過點P的直線交圓C于A、B兩點,且△PBC的面積是△PAC的面積的2倍,則實數(shù)m的取值范圍為($\frac{4}{9}$,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.將一個大正方形平均分成9個小正方形,向大正方形區(qū)域隨機投擲一個點(每次都能投中),投中最左側(cè)三個小正方形區(qū)域的事件記為A,投中最上面三個小正方形區(qū)域或正中間的一個小正方形區(qū)域的事件記為B,則P(A|B)=( 。
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)$f(x)=lnx+\frac{m}{x}+3x$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對任意的m∈[0,2],不等式f(x)≤(k+1)x,對x∈[1,e]恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=($\frac{1}{3}$x3-x2+$\frac{2}{3}$)cos2017($\frac{π}{3}x$+$\frac{2π}{3}$)+2x+3在[-2015,2017]上的最大值為M,最小值為m,則M+m=(  )
A.5B.10C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在三棱錐P-ABC中,PA=$\sqrt{2}$,PB=$\sqrt{3}$,PC=2,且PA,PB,PC兩兩垂直,則此三棱錐外接球的體積是$\frac{9π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知a>0,函數(shù)f(x)=ln(x-1)-a(x-2),g(x)=ex+(a2-2)x
(1)求f(x)在區(qū)間[2,3]上的最小值;
(2)設h(x)=af(x+2)+g(x),當x≥0時,h(x)≥-1恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某測試團隊為了研究“飲酒”對“駕車安全”的影響,隨機選取100名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進行“停車距離”測試.測試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子完全停下所需要的距離).無酒狀態(tài)與酒后狀態(tài)下的試驗數(shù)據(jù)分別列于表1和表2.
表1
停車距離d(米)(10,20](20,30](30,40](40,50](50,60]
頻數(shù)26ab82
表2
平均每毫升血液酒精含量x毫克1030507090
平均停車距離y米3050607090
已知表1數(shù)據(jù)的中位數(shù)估計值為26,回答以下問題.
(Ⅰ)求a,b的值,并估計駕駛員無酒狀態(tài)下停車距離的平均數(shù);
(Ⅱ)根據(jù)最小二乘法,由表2的數(shù)據(jù)計算y關(guān)于x的回歸方程$\hat y=\hat bx+\hat a$;
(Ⅲ)該測試團隊認為:駕駛員酒后駕車的平均“停車距離”y大于(Ⅰ)中無酒狀態(tài)下的停車距離平均數(shù)的3倍,則認定駕駛員是“醉駕”.請根據(jù)(Ⅱ)中的回歸方程,預測當每毫升血液酒精含量大于多少毫克時為“醉駕”?
(附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線$\hat y=\hat bx+\hat a$的斜率和截距的最小二乘估計分別為$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\bar x\bar y}}{{\sum_{i=1}^n{x_i^2}-n{{\bar x}^2}}}$,$\hat a=\bar y-\hat b\bar x$.)

查看答案和解析>>

同步練習冊答案