考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:數(shù)列{a
n}中滿足a
1=15,a
n+1=a
n+2n,利用a
n=(a
n-a
n-1)+(a
n-1-a
n-2)+…+(a
2-a
1)+a
1=n
2-n+15,可得
=
=n+
-1,利用導(dǎo)數(shù)考察函數(shù)f(x)=
x+(x≥1)的單調(diào)性即可得出.
解答:
解:∵數(shù)列{a
n}中滿足a
1=15,a
n+1=a
n+2n,
∴a
n=(a
n-a
n-1)+(a
n-1-a
n-2)+…+(a
2-a
1)+a
1=2(n-1)+2(n-2)+…+2+15
=
+15
=n
2-n+15,
∴
=
=n+
-1,
考察函數(shù)f(x)=
x+(x≥1)的單調(diào)性,
f′(x)=1-,
由f′(x)>0,解得
x>,此時(shí)函數(shù)f(x)單調(diào)遞增;由f′(x)<0,解得
1≤x<,此時(shí)函數(shù)f(x)單調(diào)遞減.
∴當(dāng)n=4時(shí),
的最小值為
=
.
故選:C.
點(diǎn)評:本題考查了等差數(shù)列的前n項(xiàng)和公式、“累加求和”、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.