設(shè)x,y滿(mǎn)足約束條件
2x-y≤2
2x-3y+6≥0
x≥0,y≥0
,則目標(biāo)函數(shù)z=x+y的最大值為
 
考點(diǎn):簡(jiǎn)單線(xiàn)性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出不等式對(duì)應(yīng)的平面區(qū)域,利用線(xiàn)性規(guī)劃的知識(shí),通過(guò)平移即可求z的最大值.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x+y得y=-x+z,
平移直線(xiàn)y=-x+z,
由圖象可知當(dāng)直線(xiàn)y=-x+z經(jīng)過(guò)點(diǎn)A時(shí),直線(xiàn)y=-x+z的截距最大,
此時(shí)z最大.
2x-y=2
2x-3y+6=0
,解得
x=3
y=4
,即A(3,4),
代入目標(biāo)函數(shù)z=x+y得z=3+4=7.
即目標(biāo)函數(shù)z=x+y的最大值為7.
故答案為:7.
點(diǎn)評(píng):本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線(xiàn)性規(guī)劃題目的常用方法.利用平移確定目標(biāo)函數(shù)取得最優(yōu)解的條件是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanβ=3,求
1
1+sinβ
+
1
1-sinβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={1,a,3},B={3,a2,5,6},若A∪B={1,2,3,4,5,6}則a的值為( 。
A、4B、±2C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若an=27-4n,求{|an|}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式組
x-2y+1≥0
x≤2
x+y-1≥0
表示的平面區(qū)域?yàn)镈,若函數(shù)y=|x-1|+m的圖象上存在區(qū)域D上的點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A、[0,
1
2
]
B、[-2,
1
2
]
C、[-1,
3
2
]
D、[-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一個(gè)容量為200的樣本,其斜率分布直方圖如圖所示,樣本數(shù)據(jù)在[8,10)內(nèi)的頻數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足an=3an-1+3n-1(n∈N,n≥2)且a3=95.
(1)求a1,a2的值;
(2)是否存在一個(gè)實(shí)數(shù)t,使得bn=
1
3n
(an+t)(n∈N)且{bn}為等差數(shù)列?若存在,求出t的值,如不存在,請(qǐng)說(shuō)明理由;
(3)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的圖象如圖所示,則最大、最小值分別為( 。
A、f(
3
2
),f(-
3
2
B、f(0),f(
3
2
C、f(0),f(-
3
2
D、f(0),f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中滿(mǎn)足a1=15,an+1=an+2n,則
an
n
的最小值為( 。
A、9
B、7
C、
27
4
D、2
15
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案