已知關于x的不等式x2-(3a+1)x+2a(a+1)<0的解集是A,函數(shù)數(shù)學公式的定義域是B,若A⊆B.求實數(shù)a的取值范圍.

解:原表達式可化為:(x-2a)(x-a-1)<0,
∴對應方程的根為:x1=2a,x2=a+1…(2分)
(1)當a>1時,2a>a+1,所以A=(a+1,2a),B=(-1,2),
∵A⊆B∴…(7分)
(2)當a<1時,2a<a+1,所以A=(2a,a+1),B=(-1,2),
∵A⊆B∴…(12分)
(3)當a=1時,A=?滿足A⊆B
綜合上述:…(13分)
分析:易得對應方程的根為x1=2a,x2=a+1,由定義域的求法可得B=(-1,2),分a>1,a<1,和a=1三類進行討論即可.
點評:本題考查一元二次表達式的求解,涉及集合的運算和分類討論的思想,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

研究問題:“已知關于x的不等式ax2-bx+c>0,解集為(1,2),解關于x的不等式cx2-bx+a>0”有如下解法:
解:由cx2-bx+a>0且x≠0,所以
(c×2-bx+a)
x2
>0得a(
1
x
2-
b
x
+c>0,設
1
x
=y,得ay2-by+c>0,由已知得:1<y<2,即1<
1
x
<2,∴
1
2
<x<1所以不等式cx2-bx+a>0的解集是(
1
2
,1).
參考上述解法,解決如下問題:已知關于x的不等式
b
(x+a)
+
(x+c)
(x+d)
<0的解集是:(-3,-1)∪(2,4),則不等式
bx
(ax-1)
+
(cx-1)
(dx-1)
<0的解集是
(-
1
2
,-
1
4
)∪(
1
3
,1)
(-
1
2
,-
1
4
)∪(
1
3
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-5:不等式選講
已知關于x的不等式|x-3|+|x-4|<3a2-7a+4.
(1)當a=2時,解上述不等式;
(2)如果關于x的不等式|x-3|+|x-4|<23a2-7a+4的解集為空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)幾何證明選講:如圖,CB是⊙O的直徑,AP是⊙O的切線,A為切點,AP與CB的延長線交于點P,若PA=8,PB=4,求AC的長度.
(2)坐標系與參數(shù)方程:在極坐標系Ox中,已知曲線C1:ρcos(θ+
π
4
)
=
2
2
與曲線C2;ρ=1相交于A、B兩點,求線段AB的長度.
(3)不等式選講:解關于x的不等式|x-1|+a-2≤0(a∈R).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的不等式x+
1x-a
≥7在x∈(a,+∞)
上恒成立,則實數(shù)a的最小值為
5
5

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河南省原名校高三下學期第二次聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

已知關于x的不等式|x-3|+|x-4|< 3a2-7a+4.

(1)當a=2時,解上述不等式;

(2)如果關于x的不等式| x-3|+|x-4|< 23a27a+4的解集為空集,求實數(shù)a的取值范圍.

 

查看答案和解析>>

同步練習冊答案