19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{lo{g}_{2}x(0<x≤1)}\end{array}\right.$的反函數(shù)是f-1(x),則f-1($\frac{1}{2}$)=-1.

分析 由題意,x≤0,2x=$\frac{1}{2}$,求出x,即可得出結(jié)論.

解答 解:由題意,x≤0,2x=$\frac{1}{2}$,∴x=-1,
∴f-1($\frac{1}{2}$)=-1.
故答案為-1.

點評 本題考查分段函數(shù),考查反函數(shù),考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率是$\frac{1}{2}$,過點$P(0,\frac{{\sqrt{3}}}{2})$的動直線l與橢圓相交于A,B兩點,當(dāng)直線l平行與x軸時,直線l被橢圓截得的線段長為$2\sqrt{3}$.(F1,F(xiàn)2分別為左,右焦點)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過F2的直線l′交橢圓于不同的兩點M,N,則△F1MN內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線l′方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知拋物線C:y2=2px(p>0)的焦點為F,過F的直線交拋物線C于A,B兩點,以線段AB為直徑的圓與拋物線C的準(zhǔn)線切于$M(-\frac{p}{2},3)$,且△AOB的面積為$\sqrt{13}$,則拋物線C的方程為y2=4x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.2017年某市開展了“尋找身邊的好老師”活動,市六中積極行動,認(rèn)真落實,通過微信關(guān)注評選“身邊的好老師”,并對選出的班主任工作年限不同的五位“好老師”的班主任的工作年限和被關(guān)注數(shù)量進行了統(tǒng)計,得到如下數(shù)據(jù):
班主任工作年限x(單位:年)4681012
被關(guān)注數(shù)量y(單位:百人)1020406050
(1)若”好老師”的被關(guān)注數(shù)量y與其班主任的工作年限x滿足線性回歸方程,試求回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并就此分析:“好老師”的班主任工作年限為15年時被關(guān)注的數(shù)量;
(2)若用$\frac{y_i}{x_i}$(i=1,2,3,4,5)表示統(tǒng)計數(shù)據(jù)時被關(guān)注數(shù)量的“即時均值”(四舍五入到整數(shù)),從“即時均值”中任選2組,求這2組數(shù)據(jù)之和小于8的概率.(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合A={x|x>-1,x∈R},集合B={x|x<2,x∈R},則A∩B=(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知Tn為數(shù)列$\left\{{\frac{{{2^n}+1}}{2^n}}\right\}$的前n項和,若n>T10+1013恒成立,則整數(shù)n的最小值為( 。
A.1026B.1025C.1024D.1023

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,2cos2A+3=4cosA.
(1)求角A的大;
(2)若a=2,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100]分成5組,制成如圖所示頻率分直方圖.
(Ⅰ) 求圖中x的值;
(Ⅱ) 已知滿意度評分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評分值為[90,100]的人中隨機抽取4人進行座談,設(shè)其中的女生人數(shù)為隨機變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點分別為A,B,且|AB|=4,離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點Q(4,0),若點P在直線x=4上,直線BP與橢圓交于另一點M.判斷是否存在點P,使得四邊形APQM為梯形?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案