函數(shù)f(x)=
3
sinx-cosx,
5
12
π≤x≤π值域是
[1,2]
[1,2]
分析:先利用兩角和公式對(duì)函數(shù)解析式化簡(jiǎn)整理,進(jìn)而根據(jù)正弦函數(shù)的性質(zhì)求得函數(shù)的最大和最小值.
解答:解:f(x)=
3
sinx-cosx=2sin(x-
π
6

5
12
π≤x≤π
π
4
≤x-
π
6
6

1
2
≤sin(x-
π
6
)≤1
∴1≤2sin(x-
π
6
)≤2
故答案為:[1,2].
點(diǎn)評(píng):本題主要考查了正弦函數(shù)的定義域和值域.解題的關(guān)鍵是對(duì)函數(shù)解析式的化簡(jiǎn),以及對(duì)正弦函數(shù)的基礎(chǔ)知識(shí)的熟練記憶.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=3sinx-4cosx,x∈[0,π],則函數(shù)f(x)的最大值
 
,最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=3sinx+2cosx+1.若實(shí)數(shù)a、b、c使得af(x)+bf(x-c)=1對(duì)任意實(shí)數(shù)x恒成立,則
bcosca
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3sinx+4cosx,x∈[0,π],則f(x)的值域?yàn)椋ā 。?/div>
A、[-5,5]B、[-4,4]C、[-4,5]D、[-5,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinx-cosx,x∈R,若f(x)≥1,則x的取值范圍為( 。
A、{x|kπ+
π
3
≤x≤kπ+π,k∈Z}
B、{x|2kπ+
π
3
≤x≤2kπ+π,k∈Z}
C、{x|kπ+
π
6
≤x≤kπ+
6
,k∈Z}
D、{x|2kπ+
π
6
≤x≤2kπ+
6
,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)當(dāng)x=θ時(shí),函數(shù)f(x)=3sinx+4cosx取得最大值,則cosθ=
4
5
4
5

查看答案和解析>>

同步練習(xí)冊(cè)答案