在△ABC中,a=6,B=30°,C=120°,則△ABC的面積是
 
考點(diǎn):正弦定理
專題:解三角形
分析:由B與C的度數(shù)求出A的度數(shù),確定出sinA的值,再由sinB以及a的值,利用正弦定理求出b的值,利用三角形面積公式即可求出三角形ABC面積.
解答: 解:∵在△ABC中,a=6,B=30°,C=120°,即A=30°,
∴由正弦定理
a
sinA
=
b
sinB
得:b=
asinB
sinA
1
2
1
2
=6,
則S△ABC=
1
2
absinC=9
3

故答案為:9
3
點(diǎn)評(píng):此題考查了正弦定理,以及三角形面積公式,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓錐表面積為πa,其側(cè)面展開圖是一個(gè)半圓,則圓錐底面半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x+lnx.
(1)求曲線y=f(x)在x=1處的切線方程;
(2)求f(x)的單調(diào)區(qū)間;
(3)求f(x)在區(qū)間[1,e]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=cos
2x
5
+sin
2x
5
的圖象中相鄰的兩個(gè)對(duì)稱中心之間的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若正實(shí)數(shù)x,y滿足x+y=2,則
1
xy
的最小值為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an=2an-1+1(n≥2)且a1=1,bn=log2(a2n+1+1),cn=
1
b
2
n
-1
.求證:
(Ⅰ)數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{cn}的前n項(xiàng)和Sn
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xm-
1
x
,且f(2)=
15
2

(1)求m的值;
(2)判定f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)
1-i
1+i
  
(i為虛數(shù)單位)的虛部是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系中,已知A(2,5,-2),B(-1,6,0),則AB=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案