如圖,邊長為2的正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊AB,BC的中點(diǎn),將△AED,△EBF,△FCD分別沿DE,EF,F(xiàn)D折起,使A,B,C三點(diǎn)重合于點(diǎn)A′,若四面體A'EFD的四個頂點(diǎn)在同一個球面上,則該球的半徑為(  )精英家教網(wǎng)
A、
2
B、
6
2
C、
11
2
D、
5
2
分析:把棱錐擴(kuò)展為正四棱柱,求出正四棱柱的外接球的半徑就是三棱錐的外接球的半徑.
解答:解:由題意可知△A′EF是等腰直角三角形,且A′D⊥平面A′EF.
三棱錐的底面A′EF擴(kuò)展為邊長為1的正方形,
然后擴(kuò)展為正四棱柱,三棱錐的外接球與正四棱柱的外接球是同一個球,
正四棱柱的對角線的長度就是外接球的直徑,直徑為:
12+12+22
=
6

∴球的半徑為
6
2

故選:B.
點(diǎn)評:本題考查幾何體的折疊問題,幾何體的外接球的半徑的求法,考查空間想象能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖放置的邊長為1的正三角形PAB沿x軸滾動,設(shè)頂點(diǎn)A(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是y=f(x),則f(x)在區(qū)間[-2,1]上的解析式是
 
;(說明:“正三角形PAB沿x軸滾動”包括沿x軸正方向和沿x軸負(fù)方向滾動.沿x軸正方向滾動指的是先以頂點(diǎn)A為中心順時針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時,再以頂點(diǎn)B為中心順時針旋轉(zhuǎn),如此繼續(xù);類似地,正三角形PAB也可以沿x軸負(fù)方向逆時針滾動)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽一模)如圖放置的邊長為1的正三角形ABC沿x軸的正方向滾動,設(shè)頂點(diǎn)A(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系是y=f(x).則f(x)在兩個相鄰零點(diǎn)間的圖象與x軸圍成的面積是
3
+
3
4
3
+
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,過正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的邊長為2,OP=2,連接AP、BP、CP、DP,M、N分別是AB、BC的中點(diǎn),以O(shè)為原點(diǎn),射線OM、ON、OP分別為Ox軸、Oy軸、Oz軸的正方向建立空間直角坐標(biāo)系.若E、F分別為PA、PB的中點(diǎn),求A、B、C、D、E、F的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖放置的邊長為2的正方形PABC沿x軸滾動.設(shè)頂點(diǎn)P(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系是y=f(x),則f(x)的最小正周期為
 
;  y=f(x)在其兩個相鄰零點(diǎn)間的圖象與x軸所圍區(qū)域的面積為
 

(說明:“正方形PABC 沿x軸滾動”包括沿x軸正方向和沿x軸負(fù)方向滾動.沿x軸正方向滾動指的是先以頂點(diǎn)A為中心順時針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時,再以頂點(diǎn)B為中心順時針旋轉(zhuǎn),如此繼續(xù).類似地,正方形PABC可以沿x軸負(fù)方向滾動.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省四校聯(lián)考高三(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

如圖放置的邊長為1的正三角形PAB沿x軸滾動,設(shè)頂點(diǎn)A(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是y=f(x),則f(x)在區(qū)間[-2,1]上的解析式是    ;(說明:“正三角形PAB沿x軸滾動”包括沿x軸正方向和沿x軸負(fù)方向滾動.沿x軸正方向滾動指的是先以頂點(diǎn)A為中心順時針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時,再以頂點(diǎn)B為中心順時針旋轉(zhuǎn),如此繼續(xù);類似地,正三角形PAB也可以沿x軸負(fù)方向逆時針滾動)

查看答案和解析>>

同步練習(xí)冊答案