設(shè)全集U={x|1<x<7},A={x|2≤x≤5},B={x|3≤x≤6},則(∁UA)∩B=
 
考點:交、并、補集的混合運算
專題:集合
分析:根據(jù)全集U及A,求出A的補集,找出A補集與B的交集即可.
解答: 解:∵全集U={x|1<x<7},A={x|2≤x≤5},
∴∁UA={x|1<x<2或5<x<7},
∵B={x|3≤x≤6},
∴(∁UA)∩B={x|5<x≤6}.
故答案為:{x|5<x≤6}.
點評:此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y2=2x(y≥0),A1(x1,y1),A2(x2,y2),…An(xn,yn)…是曲線C上的點,且滿足0<x1<x2<…<xn<…,一列點Bi(ai,0)(i=1,2,…)在x軸上,且△Bi-1AiBi(B0是坐標(biāo)原點)是以Ai為直角頂點的等腰直角三角形.
(Ⅰ)求A1、B1的坐標(biāo);
(Ⅱ)求數(shù)列{yn}的通項公式;
(Ⅲ)令bi=
1
a
,ci=
(
2
)-yi
2
,是否存在正整數(shù)N,當(dāng)n≥N時,都有
n
i=1
bi
n
i=1
ci
,若存在,求出N的最小值并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
a
,
b
滿足(2
a
-3
b
)•(2
a
+
b
)=3
(Ⅰ)求
a
b

(Ⅱ)求|2
a
-
b
|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正偶數(shù)排列如圖所示,其中第i行第j個數(shù)表示aij(i∈N*).例如a32=10,若
aij=2014,則i+j=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了慶祝六一兒童節(jié),某食品廠制作了3種不同的精美卡片,每袋食品隨機裝入一張卡片,集齊3種卡片可獲獎,現(xiàn)購買該種食品5袋,能獲獎的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={(x,y)|y=f(x)},若對于任意實數(shù)(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點集”,給出下列四個集合:
①M={(x,y)|y=-
1
x
}    ②M={(x,y)|y=x2-1}
③M={(x,y)|y=ex-2}   ④M={(x,y)|y=cosx}
其中是“垂直對點集”的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b,c是正實數(shù),u=
c
a+2b
+
a
b+2c
+
b
c+2a
,則u的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(
1
x
)=x+
1+x2
(x<0),則函數(shù)f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個乒乓球隊里有男隊員5人,女隊員4人,從中選出男、女隊員各一名組成混合雙打,不同的選法共有(  )
A、9種B、10種
C、15種D、20種

查看答案和解析>>

同步練習(xí)冊答案