已知圓的方程為,過點作直線與圓交于、兩點。
(1)若坐標原點O到直線AB的距離為,求直線AB的方程;
(2)當△的面積最大時,求直線AB的斜率;
(3)如圖所示過點作兩條直線與圓O分別交于R、S,若,且兩角均為正角,試問直線RS的斜率是否為定值,并說明理由。
(1)直線AB的方程為;
(2) 時△面積最大,此時直線AB的斜率為 ;
(3)直線RS的斜率為定值。
解析試題分析:(1)設過點的直線方程為,∵原點到直線AB的距離為,∴則,∴直線AB的方程為 4′
(2)直線AB的方程:代入圓的方程得
由韋達定理得,
∵ 7′
∴當時,即時△面積最大,此時直線AB的斜率為 10′
(3)設點,將直線RS的方程,代入圓的方程得
由韋達定理得①
,則
即(*),
又∵②
則①②代入(*)式整理得,即,當時,
直線RS過定點不成立,故直線RS的斜率為定值 16′
(注:若用其他正確的方法請酌情給分)
考點:本題主要考查直線方程,直線與圓的位置關(guān)系,兩角和的正切公式。
點評:中檔題,研究直線與圓的位置關(guān)系,半徑、弦長一半、圓心到直線的距離所構(gòu)成的“特征三角形”是重點,另外,通過構(gòu)建方程組,得到一元二次方程后,應用韋達定理,實現(xiàn)整體代換較為普遍。本題考查知識覆蓋面廣,對考生計算能力、數(shù)形結(jié)合思想有較好考查。
科目:高中數(shù)學 來源: 題型:解答題
已知以點C (t∈R,t≠0)為圓心的圓與x軸交于點O、A,與y軸交于點O、B,其中O為原點.
(1)求證:△AOB的面積為定值;
(2)設直線2x+y-4=0與圓C交于點M、N,若OM=ON,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分10分)
已知圓M過兩點C(1,-1)、D(-1,1)且圓心M在直線x+y-2=0上。
(1)、求圓M的方程
(2)、設P是直線3x+4y+8=0上的動點,PA、PB是圓M的兩條切線,A、B為切點,求四邊形PAMB的面積的最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
直線:,圓方程為
(1)求證:直線和圓相交
(2)當圓截直線所得弦最長時,求的值
(3)直線將圓分成兩個弓形,當弓形面積之差最大時,求直線方程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分10分)已知,圓C:,直線:.
(1) 當a為何值時,直線與圓C相切;
(2) 當直線與圓C相交于A、B兩點,且時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
在直角坐標系中,以為圓心的圓與直線相切.
(I)求圓的方程;
(II)圓與軸相交于兩點,圓內(nèi)的動點使成等比數(shù)列,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com