設(shè)l的方程為y=x,動點M到l的距離與到x軸距離之和為3的點的軌跡是
矩形
圓
橢圓
雙曲線
科目:高中數(shù)學(xué) 來源:廣東省海豐縣彭湃中學(xué)2008屆高三年級入學(xué)考試數(shù)學(xué)(理) 題型:044
設(shè)拋物線過定點A(-1,0),且以直線x=1為準(zhǔn)線.
(Ⅰ)求拋物線頂點的軌跡C的方程;
(Ⅱ)若直線l與軌跡C交于不同的兩點M,N,且線段MN恰被直線平分,設(shè)弦MN的垂直平分線的方程為y=kx+m,試求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省海豐縣彭湃中學(xué)2008屆高三年級入學(xué)考試數(shù)學(xué)(文) 題型:044
設(shè)拋物線過定點A(-1,0),且以直線x=1為準(zhǔn)線.
(Ⅰ)求拋物線頂點P的軌跡C的方程;
(Ⅱ)若直線l與軌跡C交于不同的兩點M,N,且線段MN恰被直線平分,設(shè)弦MN的垂直平分線的方程為y=kx+m,試求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)直線l的方程為(a+1)x+y-2-a=0(a∈R).
(1)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)若a>-1,直線l與x、y軸分別交于M、N兩點,O為坐標(biāo)原點,求△OMN面積取最小值時,直線l對應(yīng)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山西省晉商四校高二下學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于A、B兩點,使得.
(1)求橢圓的標(biāo)準(zhǔn)方程; (2)求直線l的方程.
【解析】(1)中利用點F1到直線x=-的距離為可知-+=.得到a2=4而c=,∴b2=a2-c2=1.
得到橢圓的方程。(2)中,利用,設(shè)出點A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在橢圓+y2=1上, 得到坐標(biāo)的值,然后求解得到直線方程。
解:(1)∵F1到直線x=-的距離為,∴-+=.
∴a2=4而c=,∴b2=a2-c2=1.
∵橢圓的焦點在x軸上,∴所求橢圓的方程為+y2=1.……4分
(2)設(shè)A(x1,y1)、B(x2,y2).由第(1)問知
,
∴……6分
∵A、B在橢圓+y2=1上,
∴……10分
∴l(xiāng)的斜率為=.
∴l(xiāng)的方程為y=(x-),即x-y-=0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com