甲船在A處觀察乙船,乙船在它的北偏東60°的方向,兩船相距a海里的B處,乙船正向北行駛,若甲船是乙船速度的
3
倍,甲船為了盡快追上乙船,則應(yīng)取北偏東
 
(填角度)的方向前進(jìn).
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:應(yīng)用題,解三角形
分析:根據(jù)題意畫(huà)出圖形,求出∠CAB與∠B的度數(shù),設(shè)出追上乙船的時(shí)間,表示出BC與AC,在三角形ABC中,利用正弦定理列出關(guān)系式,即可求出θ的度數(shù).
解答: 解:根據(jù)題意得:∠CAB=60°-θ,∠B=120°,設(shè)追上乙船的時(shí)間為x,則有BC=x,AC=
3
x,
在△ABC中,利用正弦定理
BC
sin∠CAB
=
AC
sinB
,即
x
sin(60°-θ)
=
3
x
sin120°
,
3
2
=
3
sin(60°-θ),即sin(60°-θ)=
1
2
,
∴60°-θ=30°,即θ=30°.
故答案為:30°
點(diǎn)評(píng):此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若角α的終邊在第二象限且經(jīng)過(guò)點(diǎn)P(-1,
3
),則sinα等于( 。
A、
3
2
B、-
3
2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+mx-1,若對(duì)于任意x∈[m,m+1],都有f(x)<0成立,則實(shí)數(shù)m的取值范圍是(  )
A、(0,1)
B、(0,
1
2
C、(-1,0)
D、(-
2
2
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
①設(shè)a,b∈R,a2+2b2=6,則a+b的最小值是-3;
②已知x3+sinx-2a=0,4y3+sinycosy+a=0,則cos(x+2y)=0;
③若(z-x)2-4(x-y)(y-z)=0,則x,y,z成等差數(shù)列;
④已知函數(shù)f(x)滿足f(1)=
1
3
,3f(x)f(y)=f(x+y)+f(x-y),(x,y∈R)則f(2013)=3;
其中正確的命題是
 
.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:等差數(shù)列{an}的前n項(xiàng)和為Sn,若公差d=-2,S20=0.
(Ⅰ)求通項(xiàng)an及Sn
(Ⅱ)設(shè){bn-an}是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列{bn}的通項(xiàng)公式及其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一條直線與兩條異面直線中的一條相交,那么它與另一條直線之間的位置關(guān)系是( 。
A、異面B、相交或平行或異面
C、相交D、平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D、E分別是BC、AP的中點(diǎn).求異面直線AC與ED所成的角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前6項(xiàng)如下表所示,其中奇數(shù)項(xiàng)成等差數(shù)列,偶數(shù)項(xiàng)成等比數(shù)列.
n123456
an123458
(1)寫(xiě)出數(shù)列{an}的通項(xiàng)公式(不要求推理過(guò)程);
(2)當(dāng)n是偶數(shù)時(shí),求Sn=a1a2+a3a4+a5a6+…+an-1an;
(3)當(dāng)n是奇數(shù)時(shí),求數(shù)列{an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
3ex-1,x<2
log7(8x+1),x≥2
,則f[f(ln2+1)]=(  )
A、log717
B、2
C、7
D、log7(8e2+1)

查看答案和解析>>

同步練習(xí)冊(cè)答案