某客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為:不超過25kg按0.5元/kg收費(fèi),超過25kg的部分按0.8元/kg收費(fèi),計(jì)算收費(fèi)的程序框圖如右圖所示,則①②處應(yīng)填( 。
A、y=0.8xy=0.5x
B、y=0.5xy=0.8x
C、y=0.8x-7.5y=0.5x
D、y=0.8x+12.5y=0.8x
考點(diǎn):程序框圖
專題:算法和程序框圖
分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是用分段函數(shù)計(jì)算旅客行李的托運(yùn)費(fèi)用.
解答: 解:分析程序中各變量、各語句的作用,據(jù)流程圖所示的順序,可知:該程序的作用是用分段函數(shù)計(jì)算旅客行李的托運(yùn)費(fèi)用,
當(dāng)滿足條件x>25時(shí),應(yīng)滿足“不超過25kg按0.5元/kg收費(fèi),超過25kg的部分按0.8元/kg收費(fèi)”,故①此時(shí)y=25×0.5+(x-25)×0.8=0.8x-7.5,
當(dāng)不滿足條件x>25時(shí),應(yīng)滿足“不超過25kg按0.5元/kg收費(fèi)”,故②y=0.5x,
故選:C.
點(diǎn)評(píng):算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個(gè)熱點(diǎn),應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點(diǎn)有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點(diǎn)考試的概率更大.此種題型的易忽略點(diǎn)是:不能準(zhǔn)確理解流程圖的含義而導(dǎo)致錯(cuò)誤,本題屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+an+1=an2+bn+1(a,b為常數(shù),n∈N*
(1)如果{an}為等差數(shù)列,求a,b的值;
(2)如果{an}為單調(diào)遞增數(shù)列,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x-lg
1
x
-2的零點(diǎn)所在區(qū)間為( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中錯(cuò)誤的是( 。
A、命題“若x2-5x+6=0,則x=2”的逆否命題是“若x≠2,則x2-5x+6≠0”
B、對(duì)命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,則x2+x+1≥0
C、已知命題p和q,若p∨q為假命題,則命題p與q中必一真一假
D、若x、y∈R,則“x=y”是“xy≥(
x+y
2
2”成立的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等比數(shù)列{an}中,首項(xiàng)a1=2012,公比q=-
1
2
,記Tn為它的前n項(xiàng)之積,則Tn最大時(shí),正整數(shù)n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若非零向量
a
,
b
滿足|
a
|=3|
b
|=|
a
+2
b
|,則向量
a
,
b
夾角的正弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線C的參數(shù)方程為
x=a+4cosθ
y=1+4sinθ
(θ是參數(shù),a>0),直線l的極坐標(biāo)方程為3ρcosθ+4ρsinθ=5,若曲線C與直線l只有一個(gè)公共點(diǎn),則實(shí)數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知∠AOB=60°,在∠AOB內(nèi)隨機(jī)作一條射線OC,則∠AOC小于15°的概率為( 。
A、
1
4
B、
1
2
C、
3
4
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中是奇函數(shù),且在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A、y=2x
B、y=-x2
C、y=x3
D、y=-3x

查看答案和解析>>

同步練習(xí)冊(cè)答案