對于給定數(shù)列{cn},如果存在實常數(shù)p、q,使得cn+1=pcn+q對于任意n∈N*都成立,我們稱數(shù)列{cn}是“M類數(shù)列”;
(1)若an=2n,數(shù)列{an}是否為“M類數(shù)列”?若是,指出它對應的實常數(shù)p、q,若不是,請說明理由;
(2)數(shù)列{an}滿足a1=2,an+an+1=3•2n(n∈N*),若數(shù)列{an}是“M類數(shù)列”,求數(shù)列{an}的通項公式;
(3)記數(shù)列{an}的前n項之和為Sn,求證:(n≥3).
【答案】分析:(1)由an=2n,可得an+1=an+2,根據(jù)“M類數(shù)列”定義,可得結論;
(2)根據(jù)數(shù)列{an}是“M類數(shù)列”,可得存在實常數(shù)p、q使得an+1=pan+q對于任意n∈N*都成立,結合an+an+1=3•2n(n∈N*),可求數(shù)列{an}的通項公式;
(3)確定數(shù)列{an}的前n項之和為Sn,利用放縮法,結合裂項求和,即可得到結論.
解答:(1)解:∵an=2n,∴an+1=an+2,
故數(shù)列{an}是“M類數(shù)列”,對應的實常數(shù)p、q的值分別為1、2.(2分)
(2)解:∵數(shù)列{an}是“M類數(shù)列”,
∴存在實常數(shù)p、q使得an+1=pan+q對于任意n∈N*都成立,
∴an+2=pan+1+q,故(4分)
,∴對于任意n∈N*都成立,
即對于任意n∈N*都成立,(6分)
因此p=2,q=0
此時,∴(8分)
(3)證明:由(2)知:(9分)
當n≥3時,,
當且僅當n=3時等號成立,所以Sn≥2(2n+1)(11分)
于是
因為S1=2,S2=6,S3=14,所以
=.(13分)
點評:本題考查新定義,考查數(shù)列與不等式的結合,考查數(shù)列的通項,考查放縮法、裂項法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于給定數(shù)列{cn},如果存在實常數(shù)p,q使得cn+1=pcn+q對于任意n∈N*都成立,我們稱數(shù)列{cn}是“M類數(shù)列”.
(1)若an=2n,bn=3•2n,n∈N*,數(shù)列{an}、{bn}是否為“M類數(shù)列”?若是,指出它對應的實常數(shù)p,q,若不是,請說明理由;
(2)證明:若數(shù)列{an}是“M類數(shù)列”,則數(shù)列{an+an+1}也是“M類數(shù)列”;
(3)若數(shù)列{an}滿足a1=2,an+an+1=3t•2n(n∈N*),t為常數(shù).求數(shù)列{an}前2009項的和.并判斷{an}是否為“M類數(shù)列”,說明理由;
(4)根據(jù)對(2)(3)問題的研究,對數(shù)列{an}的相鄰兩項an、an+1,提出一個條件或結論與“M類數(shù)列”概念相關的真命題,并探究其逆命題的真假.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

5、對于給定數(shù)列{cn},如果存在實常數(shù)p,q,使得cn+1=pcn+q對于任意n∈N*都成立,我們稱數(shù)列{cn}是“M類數(shù)列”.
(I)若an=2n,bn=3•2n,n∈N*,數(shù)列{an}、{bn}是否為“M類數(shù)列”?
若是,指出它對應的實常數(shù)p&,q,若不是,請說明理由;
(II)若數(shù)列{an}滿足a1=2,an+an+1=3t•2n(n∈N*),t為常數(shù).
(1)求數(shù)列{an}前2009項的和;
(2)是否存在實數(shù)t,使得數(shù)列{an}是“M類數(shù)列”,如果存在,求出t;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于給定數(shù)列{cn},如果存在實常數(shù)p,q使得cn+1=pcn+q對于任意n∈R*都成立,我們稱數(shù)列{cn}是“K類數(shù)列”.
(Ⅰ)若an=2n,bn=3•2n,n∈N*,數(shù)列{an},{bn}是否為“K類數(shù)列”?若是,指出它對應的實常數(shù)p,q,若不是,請說明理由;
(Ⅱ)證明:若數(shù)列{cn}是“K類數(shù)列”,則數(shù)列{an+an+1}也是“K類數(shù)列”;
(Ⅲ)若數(shù)列an滿足a1=2,an+an+1=3t•2n(n∈N*),t為常數(shù).求數(shù)列{an}前2012項的和.并判斷{an}是否為“K類數(shù)列”,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•湖北模擬)對于給定數(shù)列{cn},如果存在實常數(shù)p、q,使得cn+1=pcn+q對于任意n∈N*都成立,我們稱數(shù)列{cn}是“M類數(shù)列”;
(1)若an=2n,數(shù)列{an}是否為“M類數(shù)列”?若是,指出它對應的實常數(shù)p、q,若不是,請說明理由;
(2)數(shù)列{an}滿足a1=2,an+an+1=3•2n(n∈N*),若數(shù)列{an}是“M類數(shù)列”,求數(shù)列{an}的通項公式;
(3)記數(shù)列{an}的前n項之和為Sn,求證:
4
S1S2
+
4
S2S3
+
4
S3S4
+…+
4
SnSn+1
19
42
(n≥3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•懷柔區(qū)二模)對于給定數(shù)列{cn},如果存在實常數(shù)p,q使得cn+1=pcn+q對于任意n∈N*都成立,我們稱數(shù)列{cn}是“T數(shù)列”.
(Ⅰ)若an=2n,bn=3•2n,n∈N*,數(shù)列{an}、{bn}是否為“T數(shù)列”?若是,指出它對應的實常數(shù)p,q,若不是,請說明理由;
(Ⅱ)證明:若數(shù)列{an}是“T數(shù)列”,則數(shù)列{an+an+1}也是“T數(shù)列”;
(Ⅲ)若數(shù)列{an}滿足a1=2,an+an+1=3t•2n(n∈N*),t為常數(shù).求數(shù)列{an}前2013項的和.

查看答案和解析>>

同步練習冊答案