3.已知直線l:mx+y+$\sqrt{3}$=0.與圓(x+1)2+y2=2相交,弦長(zhǎng)為2,則m=$\frac{\sqrt{3}}{3}$.

分析 利用直線l:mx+y+$\sqrt{3}$=0與圓(x+1)2+y2=2相交,弦長(zhǎng)為2,得出圓心到直線l:mx+y+$\sqrt{3}$=0的距離為$\frac{|-m+\sqrt{3}|}{\sqrt{{m}^{2}+1}}$=1,即可求出m.

解答 解:圓(x+1)2+y2=2的圓心坐標(biāo)為(-1,0),半徑為$\sqrt{2}$,則
∵直線l:mx+y+$\sqrt{3}$=0與圓(x+1)2+y2=2相交,弦長(zhǎng)為2,
∴圓心到直線l:mx+y+$\sqrt{3}$=0的距離為$\frac{|-m+\sqrt{3}|}{\sqrt{{m}^{2}+1}}$=1
∴m=$\frac{\sqrt{3}}{3}$,
故答案為:$\frac{\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題重點(diǎn)考查直線與圓相交,考查弦長(zhǎng)問(wèn)題,解題的關(guān)鍵是充分利用圓的特性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.函數(shù)f(x)=x1nx-ax2-x(a∈R).
(I)若函數(shù)f(x)在x=1處取得極值,求a的值;
(II)若函數(shù)f(x)的圖象在直線y=-x圖象的下方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=xlnx-ax2+(2a-1)x,a>0.
( I)設(shè)g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
( II)若f(x)在x=1處取得極大值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{\frac{k}{x},x≥2}\\{{{({x-1})}^2},x<2}\end{array}}$,若方程f(x)=$\frac{1}{2}$有三個(gè)不同的實(shí)根,則實(shí)數(shù)k的范圍是(  )
A.(1,2]B.[1,+∞)C.[1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤4}\\{x+y-4≥0}\\{x-y≥0}\end{array}\right.$,則z=2x+y的最小值是( 。
A.4B.6C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.將函數(shù)f(x)=sin(2x+φ)+$\sqrt{3}$cos(2x+φ)(0<φ<π)的圖象向左平移$\frac{π}{4}$個(gè)單位后,得到的函數(shù)的圖象關(guān)于點(diǎn)$(\frac{π}{2},0)$對(duì)稱,則函數(shù)$g(x)=\frac{1}{2}sin(2x+φ)$在$[-\frac{π}{2},\frac{π}{6}]$上的最小值為( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.平面內(nèi)有三個(gè)向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,其中$\overrightarrow a$與$\overrightarrow b$的夾角為90°,且|$\overrightarrow a|=|\overrightarrow b|=1$,|$\overrightarrow c|=2\sqrt{3}$,若$\overrightarrow c=λ\overrightarrow a+μ\overrightarrow b$,則λ22=( 。
A.2B.4C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)y=f(x)圖象上不同兩點(diǎn)M(x1,y1),N(x2,y2)處的切線的斜率分別是kM,kN,規(guī)定φ(M,N)=$\frac{{|{{k_M}-{k_N}}|}}{{|{MN}|}}$(|MN|為線段MN的長(zhǎng)度)叫做曲線y=f(x)在點(diǎn)M與點(diǎn)N之間的“彎曲度”.①函數(shù)f(x)=x3+1圖象上兩點(diǎn)M與點(diǎn)N的橫坐標(biāo)分別為1和2,φ(M,N)=$\frac{{9\sqrt{2}}}{10}$;
②設(shè)曲線f(x)=x3+2上不同兩點(diǎn)M(x1,y1),N(x2,y2),且x1•x2=1,則φ(M,N)的取值范圍是(0,$\frac{3\sqrt{10}}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若一個(gè)長(zhǎng)方體水槽的長(zhǎng)、寬、高分別為3$\sqrt{3}$、1、2$\sqrt{2}$,則它的外接球的表面積為36π.

查看答案和解析>>

同步練習(xí)冊(cè)答案