(本小題滿分14分)

已知函數(shù)f(x)=log2.

(1)判斷并證明f(x)的奇偶性;

(2)若關于x的方程f(x)=log2(x-k)有實根,求實數(shù)k的取值范圍;

(3)問:方程f(x)=x+1是否有實根?如果有,設為x0,請求出一個長度

的區(qū)間(a,b),使x0∈(a,b);如果沒有,請說明理由.

(注:區(qū)間(a,b)的長度為b-a)

 

【答案】

 

(1)f(x)是奇函數(shù)

(2)(-∞,1)。

(3)區(qū)間(-,-)的中點g(-)>0(4')

【解析】解:(1)由得-1<x<1,所以函數(shù)f(x)的定義域為(-1,1);              (2')

因為f(-x)+f(x)=log2+log2=log2=log21=0,

所以f(-x)=-f(x),即f(x)是奇函數(shù)。                                       (4')

(2)方程f(x)=log2(x-k)有實根,也就是方程=x-k即k=x-在(-1,1)內(nèi)有解,所以實數(shù)k屬于函數(shù)y=x-=x+1-在(-1,1)內(nèi)的值域。                  (6')

令x+1=t,則t∈(0,2),因為y=t-在(0,2)內(nèi)單調(diào)遞增,所以t-∈(-∞,1)。

故實數(shù)k的取值范圍是(-∞,1)。                                            (8')

(3)設g(x)=f(x)-x-1=log2-x-1(-1<x<1)。

因為,且y=log2x在區(qū)間(0,+∞)內(nèi)單調(diào)遞增,所以log2<log223,即4log2<3,亦即log2<。于是g(-)=log2-<0。                 ①     (10')

又∵g (-)=log2->1->0。                                    ②     (12')

由①②可知,g(-)·g(-)<0,所以函數(shù)g(x)在區(qū)間(-,-)內(nèi)有零點x0。

即方程f(x)=x+1在(-,-)內(nèi)有實根x0。                                  (13')

又該區(qū)間長度為,因此,所求的一個區(qū)間可以是(-,-)。(答案不唯一)      (14')

思路提示:用“二分法”逐步探求,先算區(qū)間(-1,1)的中點g(0)=-1<0(1'),由于g(x)在(-1,1)內(nèi)單調(diào)遞減,于是再算區(qū)間(-1,0)的中點g(-)=log23->0(2'),然后算區(qū)間(-,0)的中點 g(-)<0(3'),最后算區(qū)間(-,-)的中點g(-)>0(4')。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案