設(shè)均為正數(shù),且
證明:(1);
(2).

(1)證明:見解析;(2)證明:見解析.

解析試題分析:(1)利用基本不等式,得到,
利用,首先得到,得證;
(2)為應(yīng)用,結(jié)合求證式子的左端,應(yīng)用基本不等式得到,,同向不等式兩邊分別相加,即得證.
試題解析:(1),,,            2分
所以            4分
所以              5分
(2),        7分
                10分
考點:基本不等式,不等式證明方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

圖1是某斜拉式大橋圖片,為了了解橋的一些結(jié)構(gòu)情況,學(xué)校數(shù)學(xué)興趣小組將大橋的結(jié)構(gòu)進(jìn)行了簡化,取其部分可抽象成圖2所示的模型,其中橋塔、與橋面垂直,通過測量得知,當(dāng)中點時,.
(1)求的長;
(2)試問在線段的何處時,達(dá)到最大.


圖1

 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為正實數(shù),若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某造紙廠擬建一座平面圖形為矩形且面積為162m2的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/m2,中間兩道隔墻建造單價為248元/m2,池底建造單價為80元/m2,水池所有墻的厚度忽略不計.
 
(1)試設(shè)計污水處理池的長和寬,使總造價最低,并求出最低總造價;
(2)若由于地形限制,該池的長和寬都不能超過16m,試設(shè)計污水池的長和寬,使總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一段長為36m的籬笆圍成一個矩形菜園, 問這個矩形的長,寬各為多少時,菜園的面積最大.最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知x,y,z均為正數(shù).求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

觀察下列兩個結(jié)論:
(Ⅰ)若,且,則
(Ⅱ)若,且,則
先證明結(jié)論(Ⅱ),再類比(Ⅰ)(Ⅱ)結(jié)論,請你寫出一個關(guān)于個正數(shù)的結(jié)論?(寫出結(jié)論,不必證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)滿足約束條件,則的最小值是(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

的最小值為        

查看答案和解析>>

同步練習(xí)冊答案