2.已知等差數(shù)列{an}前n項和為Sn,且${S_n}={n^2}+c$(n∈N*).
(Ⅰ) 求c,an;
(Ⅱ) 若${b_n}=\frac{a_n}{2^n}$,求數(shù)列{bn}前n項和Tn

分析 (1)利用數(shù)列遞推關系、等差數(shù)列的通項公式即可得出.
(2)利用“錯位相減法”與等比數(shù)列的求和公式即可得出.

解答 解:(1)∵${S_n}={n^2}+c$,
∴a1=S1=1+c,a2=S2-S1=(4+c)-(1+c)=3,a3=S3-S2=5…(2分)
又∵{an}等差數(shù)列,∴6+c=6,c=0;    …(3分)
d=3-1=2;a1=S1=1+c=1,…(4分)
∴an=1+2(n-1)=2n-1…(5分)
(2)${b_n}=\frac{2n-1}{2^n}$…(6分)
${T_n}=\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+…+\frac{2n-3}{{{2^{n-1}}}}+\frac{2n-1}{2^n}$…①…(7分)
$\frac{1}{2}{T_n}=\begin{array}{l}{\;}&{\frac{1}{2^2}+\frac{3}{2^3}+\frac{5}{2^4}+…+\frac{2n-3}{2^n}+\frac{2n-1}{{{2^{n+1}}}}}\end{array}$…②…(8分)
①-②得  $\frac{1}{2}{T_n}=\frac{1}{2}+2(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+…+\frac{1}{2^n})-\frac{2n-1}{{{2^{n+1}}}}$…(9分)
$\frac{1}{2}{T_n}=\frac{1}{2}+2×\frac{{\frac{1}{2^2}[1-{{(\frac{1}{2})}^{n-1}}]}}{{1-\frac{1}{2}}}-\frac{2n-1}{{{2^{n+1}}}}$…(10分)
$\frac{1}{2}{T_n}=\frac{3}{2}-\frac{2n+3}{{{2^{n+1}}}}$…1(1分)
${T_n}=3-\frac{2n+3}{2^n}$…(12分)

點評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知y=f(x+1)+2是定義域為R的奇函數(shù),則f(e)+f(2-e)=-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.我國古代有著輝煌的數(shù)學研究成果.《周髀算經(jīng)》、《九章算術》、《海島算經(jīng)》、《孫子算經(jīng)》、…、《輯古算經(jīng)》等算經(jīng)10部專著,有著十分豐富多彩的內(nèi)容,是了解我國古代數(shù)學的重要文獻.這10部專著中有7部產(chǎn)生于魏晉南北朝時期.某中學擬從這10部名著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,則所選2部名著中至少有一部是魏晉南北朝時期的名著的概率為( 。
A.$\frac{14}{15}$B.$\frac{13}{15}$C.$\frac{2}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.為了得到函數(shù)$y=sin({2x-\frac{π}{6}})$的圖象,可以將函數(shù)y=cos2x的圖象( 。
A.向左平移$\frac{π}{3}$個單位B.向左平移$\frac{π}{6}$個單位
C.向右平移$\frac{π}{6}$個單位D.向右平移$\frac{π}{3}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知集合$M=\{x|{x^2}=x\},N=\{x|\frac{x}{x-1}≥0\}$,則M∩N=( 。
A.B.{0}C.{1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒.若一名行人 來到該路口遇到紅燈,則至少需要等待15秒才出現(xiàn)綠燈的概率為$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在如圖所示一組數(shù)據(jù)的莖葉圖中,有一個數(shù)字被污染后而模糊不清,但曾計算得該組數(shù)據(jù)的極差與中位數(shù)之和為61,則被污染的數(shù)字為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABO中,點C是點B關于點A的對稱點,點D是OB靠近B的三等分點,DC與OA交于E點,設$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OC}$,$\overrightarrow{CD}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知過原點的直線l與圓C:x2+y2-6x+5=0相交于不同的兩點A、B,且線段AB中點坐標為(2,$\sqrt{2}$),則弦長為(  )
A.2B.3C.4D.5

查看答案和解析>>

同步練習冊答案