精英家教網 > 高中數學 > 題目詳情

已知函數f(x)為定義域為R的偶函數,當x≥0時,f(x)=log2(x+1)
(1)當x<0時,求f(x)的解析式;
(2)作出函數f(x)的圖象,并指出其單調區(qū)間,以及在每一個單調區(qū)間上,它是增函數還是減函數,并指出f(x)的值域.(不要求證明)

解:(1)當x<0時,-x>0,
∵f(x)是偶函數,
∴f(-x)=f(x)
∴f(x)=f(-x)=log2(-x+1)(x<0)…
(2)圖象如圖所示 …
由圖知,單增區(qū)間(0,+∞);單減區(qū)間(-∞,0);值域[0,+∞)…
分析:(1)當x<0時,-x>0,由x≥0時,f(x)=log2(x+1)可求f(-x),由f(-x)=f(x)可求f(x)
(2)根據函數的圖象平移可先作出f(x)=log2(x+1)的圖象然后由偶函數的圖象關于y軸對稱即可
點評:本題主要考查了利用偶函數的性質求解函數解析式,函數圖象的作法,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=x+
a
x
的定義域為(0,+∞),且f(2)=2+
2
2
.設點P是函數圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x3-x,其圖象記為曲線C.
(1)求函數f(x)的單調區(qū)間;
(2)證明:若對于任意非零實數x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則
S1S2
為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=1+ln
x
2-x
(0<x<2).
(1)試問f(x)+f(2-x)的值是否為定值?若是,求出該定值;若不是請,說明理由;
(2)定義Sn=
2n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+
f(
2n-1
n
)
,其中n∈N*,求S2013;
(3)在(2)的條件下,令Sn+1=2an,若不等式2an(an)m>1對?n∈N*且n≥2恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=1-|2x-a|,a∈R.
(I)當a=5時,求不等式f(x)≥3x-2的解集.
(II)求證:函數f(x)=1-|2x-a|的最大值恒為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x+
ax
的定義域為(0,+∞),a>0且當x=1時取得最小值,設點P是函數圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值;
(2)問:PM•PN是否為定值?若是,則求出該定值,若不是,請說明理由;
(3)設O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

同步練習冊答案