年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省、臨川一中高三8月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求y=f(x)的極值點(diǎn)(即函數(shù)取到極值時(shí)點(diǎn)的橫坐標(biāo)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三下學(xué)期開學(xué)質(zhì)量檢測數(shù)學(xué)試卷 題型:解答題
(本小題滿分16分)已知函數(shù)f(x)=是定義在R上的奇函數(shù),其值域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052503512729687978/SYS201205250353498437943046_ST.files/image002.png">.
(1) 試求a、b的值;
(2) 函數(shù)y=g(x)(x∈R)滿足:
條件1: 當(dāng)x∈[0,3)時(shí),g(x)=f(x);條件2: g(x+3)=g(x)lnm(m≠1).
① 求函數(shù)g(x)在x∈[3,9)上的解析式;
② 若函數(shù)g(x)在x∈[0,+∞)上的值域是閉區(qū)間,試探求m的取值范圍,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三下學(xué)期開學(xué)質(zhì)量檢測數(shù)學(xué)試卷 題型:填空題
在平面直角坐標(biāo)系xOy中,過坐標(biāo)原點(diǎn)的一條直線與函數(shù)f(x)=的圖象交于P、Q兩點(diǎn),則線段PQ長的最小值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專項(xiàng)訓(xùn)練(河北) 題型:選擇題
已知函數(shù)f(x)=x4-2x3+3m,x∈R,若f(x)+9≥0恒成立,則實(shí)數(shù)m的取值范圍是 ( )
A.m≥ B.m>
C.m≤ D.m<
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省、鐘祥一中高三第二次聯(lián)考數(shù)學(xué)理卷 題型:填空題
在平面直角坐標(biāo)系xOy中,設(shè)直線y=x+2m和圓x2+y2=n2相切,其中m,n∈N*,0<| m-n |≤1,若函數(shù)f (x)=mx+1-n的零點(diǎn)x0∈(k,k+1),k∈Z,則k=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com