如圖所示,正方形ABCD與直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求四面體BDEF的體積.
考點:棱柱、棱錐、棱臺的體積,直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)由線面垂直得DE⊥AC,由正方形性質(zhì)得AC⊥BD,由此能證明AC⊥平面BDE.
(Ⅱ)由已知得AB⊥平面ADEF,由此能求出四面體BDEF的體積.
解答: (Ⅰ)證明:∵平面ABCD⊥平面ADEF,∠ADE=90°,
∴DE⊥平面ABCD,
∴DE⊥AC,
∵ABCD是正方形,∴AC⊥BD,
∴AC⊥平面BDE.
(Ⅱ)解:∵平面ABCD⊥平面ADEF,AB⊥AD,
∴AB⊥平面ADEF,
∵AF∥DE,∠ADE=90°,DE=DA=2,
∴S△DEF=
1
2
×ED×AD
=
1
2
×2×2
=2,
∴四面體BDEF的體積V=
1
3
S△DEF×AB
=
1
3
×2×2
=
4
3
點評:本題考查直線與平面垂直的證明,考查四面體的體積的求法,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

化簡:cos40°•2sin40°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+ax-12=0},B={x|x2+bx+c=0},且A≠B,A∩B={-3},A∪B={-3,1,4},求實數(shù)a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是為解決某個問題而繪制的程序框圖,仔細(xì)分析各圖框內(nèi)的內(nèi)容及框圖之間的關(guān)系,回答下面的問題:
(1)若a=-1,b=3,求輸出y1,y2的值;
(2)若最終輸出的結(jié)果是y1=3,y2=-2,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時具有性質(zhì)“①最小正周期是π;②圖象關(guān)于點(
π
12
,0)對稱;③在[
π
3
6
]上是減函數(shù)”的一個函數(shù)是( 。
A、y=sin(2x+
π
6
B、y=cos(2x+
π
3
C、y=sin(2x-
π
6
D、y=sin(2x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是Ac,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到A1DE的位置,使A1C⊥CD,如圖2.
(1)求證:A1C⊥平面BCDE;
(2)求棱錐A1-CBED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
ex
x
(x>0)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓x2+y2-4x-4y-10=0上至少有三個不同點到直線l:ax+by=0的距離為2
2
,則直線l的斜率的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin(ωx+ϕ)(ω>0,-
π
2
<ϕ<
π
2
)的部分圖象如圖所示,則ω,φ的值分別是( 。
A、2,-
π
3
B、2,-
π
6
C、
1
2
,
π
3
D、
1
2
,
π
6

查看答案和解析>>

同步練習(xí)冊答案