如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P是側(cè)棱CC1上的一點(diǎn),CP=m.
(1)求二面角C1-DB-C的正切值;
(2)試確定m,使得直線(xiàn)AP與平面BDD1B1所成角的正切值為3

【答案】分析:解法一(幾何法)(1)連AC,設(shè)AC∩BD=O,連接OC,OC1,可得∠COC1即為二面角C1-DB-C的平面角,解Rt△COC1,即可得到二面角C1-DB-C的正切值.
(2)設(shè)AP與面BDD1B1交于點(diǎn)G,連OG,可得∠AGO即為AP與面BDD1B1所成的角,解Rt△AOG,即可得到一個(gè)關(guān)于m的方程,解方程即可得到滿(mǎn)足條件的m的值.
解法二(向量法)(1)建立如圖所示的空間直角坐標(biāo)系,分別求出平面C1DB和平面DBC的法向量,代入向量夾角公式,即可得到二面角C1-DB-C的正切值;
(2)分別求出直線(xiàn)AP的方向向量與平面BDD1B1的法向量,根據(jù)根據(jù)直線(xiàn)AP與平面BDD1B1所成角的正切值為3,構(gòu)造一個(gè)關(guān)于m的方程,解方程即可得到滿(mǎn)足條件的m的值.
解答: 解法一(幾何法):
解:(1)如圖,連AC,設(shè)AC∩BD=O,連接OC,OC1,
則AC⊥BD,CC1⊥BD,
∴BD⊥平面CC1O,
∴BD⊥CC1,
故∠COC1即為二面角C1-DB-C的平面角
在Rt△COC1中,CC1=1,CO=
則tan∠COC1==
故二面角C1-DB-C的正切值為
(2)設(shè)AP與面BDD1B1交于點(diǎn)G,連OG,
因?yàn)镻C∥面BDD1B1,而B(niǎo)DD1B1∩面APC=OG,
故OG∥PC,
所以O(shè)G=PC=
又AO⊥DB,AO⊥BB1
所以AO⊥面BDD1B1,
故∠AGO即為AP與面BDD1B1所成的角
在Rt△AOG中,tan∠AGO==3
即m=.?
故當(dāng)m=時(shí),直線(xiàn)AP與平面BDD1B1所成角的正切值為3.?
解法二(向量法)
解:(1)建立如圖所示的空間直角坐標(biāo)系,則A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),B1(1,1,1),D1(0,0,1)?
=(0,0,1)為平面DBC一個(gè)法向量,
設(shè)=(x,y,z)為平面C1DB的一個(gè)法向量,則

=(1,-1,1)
設(shè)二面角C1-DB-C的平面角為θ
則cosθ==
則sinθ=,tanθ=
即二面角C1-DB-C的正切值為
(2)∵=(-1,1,0),=(0,0,1),?
=(-1,1,m),=-1,1,0),?
又由=0,=0知,為平面BB1D1D的一個(gè)法向量.?
設(shè)AP與平面BB1D1D所成的角為θ,?
則sinθ=cos(-θ)==
依題意有=,?
解得m=,??
故當(dāng)m=時(shí),直線(xiàn)AP與平面BDD1B1所成角的正切值為3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二面角的平面角及求法,直線(xiàn)與平面所成的解,其中解法一的關(guān)鍵是找到線(xiàn)面夾角和二面角的平面角,將空間線(xiàn)面夾角問(wèn)題和二面角問(wèn)題轉(zhuǎn)化為解三角形問(wèn)題;而解法二的關(guān)鍵是建立空間坐標(biāo)系,求出直線(xiàn)的方向向量和平面的法向量,將空間線(xiàn)面夾角問(wèn)題和二面角問(wèn)題轉(zhuǎn)化為向量夾角問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一棱長(zhǎng)為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線(xiàn)為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過(guò)角的正弦
值.
(2)在上述旋轉(zhuǎn)過(guò)程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問(wèn)在線(xiàn)段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江蘇省南京市金陵中學(xué)高三(上)8月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在棱長(zhǎng)都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點(diǎn).
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省合肥八中高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,一棱長(zhǎng)為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線(xiàn)為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過(guò)角的正弦
值.
(2)在上述旋轉(zhuǎn)過(guò)程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問(wèn)在線(xiàn)段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案