7.在復平面內,設z=1+i(i是虛數(shù)單位),則$|\frac{2}{z}-z|$=( 。
A.0B.$\sqrt{2}$C.2D.4

分析 把z=1+i代入$\frac{2}{z}-z$,然后利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)求模公式計算得答案.

解答 解:由z=1+i,
得$\frac{2}{z}-z=\frac{2}{1+i}-(1+i)=1-i-1-i=-2i$,
∴$|{\frac{2}{z}-z}|=2$.
故選:C.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)模的求法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.下列命題正確的個數(shù)是( 。
①$\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow 0$; ②$\overrightarrow{BC}+\overrightarrow{AB}=\overrightarrow{AC}$; ③$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{BC}$; ④$0•\overrightarrow{AB}=0$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在直角坐標系xoy中,已知曲線${C_1}:\left\{\begin{array}{l}x=cosα\\ y={sin^2}α\end{array}\right.$(α為參數(shù)),在以O為極點,x軸正半軸為極軸的極坐標系中,曲線${C_2}:ρcos(θ-\frac{π}{4})=-\frac{{\sqrt{2}}}{2}$,曲線C3:ρ=2sinθ
(1)求曲線C1,C2交點的直角坐標
(2)設點A、B分別為曲線C2,C3上的動點,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖是一個幾何體的正視圖和俯視圖.
(1)試判斷該幾何體是什么幾何體?(不用說明理由)
(2)請在正視圖的正右邊畫出其側視圖,并求該平面圖形的面積;
(3)求出該幾何體的體積與表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列四個命題中,正確的個數(shù)是( 。
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x<0”;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”,
③“命題p∨q為真”是“命題p∧q為真”的充分不必要條件;
④在公差為d的等差數(shù)列{an}中,a1=2,a1,a3,a4成等比數(shù)列,則公差d為$-\frac{1}{2}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.計算定積分$\int_{-1}^1{|{x^2}-x|dx=}$1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.集合A={x|x是平面內的三角形},B={x|x是平面內的矩形},C={x|x是平面內的圓},D={x|x>0},給出下列關系:
①f:A→C,作三角形的內切圓;
②f:C→B,作圓的內接矩形;
③f:A→C,作三角形的外接圓;
④f:C→A,作圓的內接三角形;
⑤f:B→D,求矩形的對角線長;
⑥f:C→D,求圓的周長;
其中不是映射的序號為②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.計算
(1)若 A={x|x>1},B={x|-2<x<2},C={x|-3<x<5},求(A∪B)∩C.
(2)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-9.6)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(1.5)^{-2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若x、y∈R+,x+4y=40,則xy的最大值為100.

查看答案和解析>>

同步練習冊答案