【題目】如圖所示,已知橢圓:()的離心率為,右準(zhǔn)線方程是直線l,點(diǎn)P為直線l上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作橢圓的兩條切線,切點(diǎn)分別為AB(點(diǎn)Ax軸上方,點(diǎn)Bx軸下方).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)①求證:分別以為直徑的兩圓都恒過(guò)定點(diǎn)C

②若,求直線的方程.

【答案】1.(2)①答案見(jiàn)解析:②

【解析】

1)計(jì)算得到,得到答案.

2)計(jì)算切線,得到坐標(biāo),得到為直徑的圓的圓方程,取計(jì)算得到答案;設(shè),,解得坐標(biāo),得到直線方程.

1,準(zhǔn)線,解得,,故,

故橢圓方程為:.

2)①設(shè)切點(diǎn),當(dāng)時(shí),,,

,則切線,所以點(diǎn)

為直徑的圓:,

由對(duì)稱性可知定點(diǎn)在x軸上,令,過(guò)定點(diǎn),

同理,以為直徑的圓過(guò)定點(diǎn),得證.

②設(shè),,,因?yàn)?/span>,所以,

又因?yàn)?/span>,所以,,

所以直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在四棱錐中,底面為矩形,側(cè)面底面,.

1)求二面角的大;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面平面,四邊形為平行四邊形,為線段的中點(diǎn),點(diǎn)滿足.

(Ⅰ)求證:直線平面;

(Ⅱ)求證:平面平面

(Ⅲ)若平面平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),().

1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)am的值;

2)關(guān)于x的方程能否有三個(gè)不同的實(shí)根?證明你的結(jié)論;

3)若對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著城市化建設(shè)步伐,建設(shè)特色社會(huì)主義新農(nóng)村,有n個(gè)新農(nóng)村集結(jié)區(qū),,,…,按照逆時(shí)針?lè)较蚍植荚谕苟噙呅雾旤c(diǎn)上(),如圖所示,任意兩個(gè)集結(jié)區(qū)之間建設(shè)一條新道路,兩條道路的交匯處安裝紅綠燈(集結(jié)區(qū),,…,除外),在凸多邊形內(nèi)部任意三條道路都不共點(diǎn),記安裝紅綠燈的個(gè)數(shù)為.

1)求,;

2)求,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若無(wú)窮數(shù)列滿足:,且對(duì)任意,(sk,l,)都有,則稱數(shù)列為“T”數(shù)列.

1)證明:正項(xiàng)無(wú)窮等差數(shù)列是“T”數(shù)列;

2)記正項(xiàng)等比數(shù)列的前n項(xiàng)之和為,若數(shù)列是“T”數(shù)列,求數(shù)列公比的取值范圍;

3)若數(shù)列是“T”數(shù)列,且數(shù)列的前n項(xiàng)之和滿足,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=aex,gx=lnx-lna,其中a為常數(shù),且曲線y=fx)在其與y軸的交點(diǎn)處的切線記為l1,曲線y=gx)在其與x軸的交點(diǎn)處的切線記為l2,且l1l2

1)求l1,l2之間的距離;

2)若存在x使不等式成立,求實(shí)數(shù)m的取值范圍;

3)對(duì)于函數(shù)fx)和gx)的公共定義域中的任意實(shí)數(shù)x0,稱|fx0-gx0|的值為兩函數(shù)在x0處的偏差.求證:函數(shù)fx)和gx)在其公共定義域內(nèi)的所有偏差都大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱中,,底面三邊長(zhǎng)分別為35,7是上底面所在平面內(nèi)的動(dòng)點(diǎn),若三棱錐的外接球表面積為,則滿足題意的動(dòng)點(diǎn)的軌跡對(duì)應(yīng)圖形的面積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸為非負(fù)半軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求直線的直角坐標(biāo)方程和曲線的普通方程;

2)求直線與曲線交于兩點(diǎn),線段的中點(diǎn)的橫坐標(biāo)為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案