18.已知點($\frac{π}{4}$,1)在函數(shù)f(x)=2asinxcosx+cos2x的圖象上.
(Ⅰ) 求a的值和f(x)最小正周期;
(Ⅱ) 求函數(shù)f(x)在(0,π)上的單調(diào)減區(qū)間.

分析 (Ⅰ)利用二倍角以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,圖象過點($\frac{π}{4}$,1),可得a的值.利用周期公式求函數(shù)的最小正周期.
(Ⅱ)將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的減區(qū)間上,解不等式得函數(shù)的單調(diào)遞減區(qū)間;根據(jù)k的取值,即可得x在(0,π)的減區(qū)間.

解答 解:(Ⅰ)函數(shù)f(x)=2asinxcosx+cos2x.
化解可得:f(x)=asin2x+cos2x.
∵圖象過點($\frac{π}{4}$,1),
即1=asin$\frac{π}{2}$+cos$\frac{π}{2}$
可得:a=1.
∴f(x)=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)
∴函數(shù)的最小正周期T=$\frac{2π}{2}=π$.
(Ⅱ)由2kπ+$\frac{π}{2}≤$2x+$\frac{π}{4}$$≤\frac{3π}{2}+2kπ$,k∈Z.
可得:$kπ+\frac{π}{8}$≤x≤$\frac{5π}{8}+kπ$,k∈Z.
函數(shù)f(x)的單調(diào)減區(qū)間為[$kπ+\frac{π}{8}$,$\frac{5π}{8}+kπ$],k∈Z.
∵x∈(0,π).
當k=0時,可得單調(diào)減區(qū)間為[$\frac{π}{8}$,$\frac{5π}{8}$].
函數(shù)f(x)在(0,π)上的單調(diào)減區(qū)間為[$\frac{π}{8}$,$\frac{5π}{8}$].

點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質的運用,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關鍵.屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知點P是長軸長為$2\sqrt{2}$的橢圓Q:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上異于頂點的一個動點,O為坐標原點,A為橢圓的右頂點,點M為線段PA的中點,且直線PA與OM的斜率之積恒為$-\frac{1}{2}$.
(1)求橢圓Q的方程;
(2)設過左焦點F1且不與坐標軸垂直的直線l交橢圓于C,D兩點,線段CD的垂直平分線與x軸交于點G,點G橫坐標的取值范圍是$[-\frac{1}{4},0)$,求|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.某優(yōu)秀學習小組有6名同學,坐成三排兩列,現(xiàn)從中隨機抽2人代表本小組展示小組合作學習成果,則所抽的2人來自同一排的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)$f(x)=\left\{\begin{array}{l}1,0≤x<\frac{1}{2}\\-1,\frac{1}{2}≤x<1\\ 0,\;x<0或x≥1\end{array}\right.$和$g(x)=\left\{\begin{array}{l}1,0≤x<1\\ 0,x<0或x≥1\end{array}\right.$
則g(2x)=$\left\{\begin{array}{l}{1,0≤x<\frac{1}{2}}\\{0,x<0或x≥\frac{1}{2}}\end{array}\right.$;
若m,n∈Z,且m•g(n•x)-g(x)=f(x),則m+n=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.“sinα+cosα=0”是“cos2α=0”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分且必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知a,b∈R,則“b≠0”是“復數(shù)a+bi是純虛數(shù)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=ex-e-x,下列命題正確的有①②④.(寫出所有正確命題的編號)
①f(x)是奇函數(shù);
②f(x)在R上是單調(diào)遞增函數(shù);
③方程f(x)=x2+2x有且僅有1個實數(shù)根;
④如果對任意x∈(0,+∞),都有f(x)>kx,那么k的最大值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.某空間幾何體的三視圖如圖所示,則該幾何體的體積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知平面α,β,γ,直線m,n,l,給出下列四種說法:
(1)若α∩γ=m,β∩γ=n,且m∥n,則α∥β;
(2)若m,n相交且都在α,β外,m∥α,m∥β,n∥α,n∥β,則α∥β;
(3)若m∥α,n∥β,且m∥n,則α∥β;
(4)若m⊆α,n⊆β,α∩β=l,m∥n,則m∥l;
以上說法正確的有(2)(4).

查看答案和解析>>

同步練習冊答案