設(shè)向量
a
=(x,2),
b
=(2,1)
,若
a
b
的夾角為銳角,則實數(shù)x的取值范圍為
 
分析:由題意可得
a
b
=2x+2>0,,且x×1-2×1≠0,解不等式求得 x 的取值范圍.
解答:解:由題意可得
a
b
=2x+2>0,且x×1-2×1≠0,∴x>-1,且 x≠4,
故實數(shù)x的取值范圍為 (-1,+4)∪(4,+∞),
故答案為:(-1,+4)∪(4,+∞).
點評:本題考查兩個向量的數(shù)量積的定義,兩個向量的數(shù)量積公式的應(yīng)用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)向量
a
=(x,2),
b
=(x+n,2x-1) (n∈N+)
,函數(shù)y=
a
b
在[0,1]上的最小值與最大值的和為an,又數(shù)列{bn}滿足:nb1+(n-1)b2+…+bn=(
9
10
)n-1+(
9
10
)n-2+…+(
9
10
)+1

(1)求證:an=n+1;
(2)求bn的表達式;
(3)cn=-an•bn,試問數(shù)列{cn}中,是否存在正整數(shù)k,使得對于任意的正整數(shù)n,都有cn≤ck成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)向量
=(x , 2)
=(x+n , 2x-1)
(n為正整數(shù)),函數(shù)y=
在[0,1]上的最小值與最大值的和為an,又數(shù)列{bn}滿足:nb1+(n-1)b2+…+2bn-1+bn=(
9
10
)n-1+(
9
10
)n-2+…+
9
10
+1

(1)求證:an=n+1(2).
(2)求bn的表達式.
(3)若cn=-an•bn,試問數(shù)列{cn}中,是否存在正整數(shù)k,使得對于任意的正整數(shù)n,都有cn≤ck成立?證明你的結(jié)論.(注:
=( a1 ,a2 )
={ a1 ,a2 }
表示意義相同)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)向量
a
=(x,2),
b
=(x+n,2x-1)
(n∈N*),函數(shù)y=
a
b
在[0,1]上的最大值與最小值的和為an,又數(shù)列{bn}滿足:nb1+(n-1)b2+…+2bn-1+bn=(
9
10
)n-1+(
9
10
)n-2+
…+
9
10
+1

(1)求an、bn的表達式.
(2)Cn=-anbn,問數(shù)列{cn}中是否存在正整數(shù)k,使得對于任意的正整數(shù)n,都有Cn≤Ck成立,若存在,求出k的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•嘉定區(qū)三模)設(shè)向量
a
=(x , 2)
b
=(x+n , 2x-1)
(n∈N*),函數(shù)y=
a
b
在x∈[0,1]上的最小值與最大值的和為an,又數(shù)列{bn}滿足b1=1,b1+b2+…+bn=(
9
10
)n-1

(1)求證:an=n+1;
(2)求數(shù)列{bn}的通項公式;
(3)設(shè)cn=-an•bn,試問數(shù)列{cn}中,是否存在正整數(shù)k,使得對于任意的正整數(shù)n,都有cn≤ck成立?若存在,求出所有滿足條件的k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案