2.設(shè)p:x2-x-20>0,q:5<x<9,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)充分條件和必要條件的定義即可得到結(jié)論

解答 解:p:x2-x-20>0得x>5或x<-4,
q:5<x<9,
(5,9)?(5,+∞)∪(-∞,-4)
則p是q的充分不必要條件,
故選:A

點評 本題主要考查充分條件和必要條件的判斷,利用集合關(guān)系得出條件即可,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某高校從2016年招收的大一新生中,隨機抽取60名學(xué)生,將他們的2016年高考數(shù)學(xué)成績(滿分150分,成績均不低于90分的整數(shù))分成六段[90,100),[100,110)…[140,150),后得到如圖所示的頻率分布直方圖.
(1)求圖中實數(shù)a的值;
(2)若該校2016年招收的大一新生共有960人,試估計該校招收的大一新生2016年高考數(shù)學(xué)成績不低于120分的人數(shù);
(3)若用分層抽樣的方法從數(shù)學(xué)成績在[90,100)與[140,150]兩個分數(shù)段內(nèi)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至少有1人在分數(shù)段[90,100)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,在三棱柱ABC-A1B1C1中,點D為AC的中點,點D1是A1C1中點
(1)求證:BC1∥平面AB1D1
(2)求證:平面AB1D1∥平面C1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某人用如圖所示的紙片,沿折痕折后粘成一個四棱錐形的“走馬燈”,正方形做燈底,且有一個三角形面上寫上了“年”字,當(dāng)燈旋轉(zhuǎn)時,正好看到“新年快樂”的字樣,則在①、②、③處應(yīng)依次寫上(  )
A.快、新、樂B.樂、新、快C.新、樂、快D.樂、快、新

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)(x∈R)是奇函數(shù),且當(dāng)x>0時,f(x)=2x-1.
(1)求函數(shù)f(x)的解析式;     
(2)求f(f(-2))的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|x2-2x>0},集合B={x|y=lg(x-1)},則A∩B=( 。
A.(1,+∞)B.(2,+∞)C.(-∞,0)∪(2,+∞)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f(x)=x+1,g(x)=-2x,$F(x)=\left\{\begin{array}{l}f(x),f(x)<g(x)\\ g(x),f(x)≥g(x)\end{array}\right.$,則F(x)的最值是( 。
A.有最大值為$\frac{2}{3}$,無最小值B.有最大值為$-\frac{1}{3}$,無最小值
C.有最小值為$-\frac{1}{3}$,無最大值D.有最小值為$\frac{2}{3}$,無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|x-x2≥0},B={x|y=lg(2x-1)},則A∩B=( 。
A.$[{0,\frac{1}{2}})$B.[0,1]C.$({\frac{1}{2},1}]$D.$({\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知△ABC的兩個頂點A,B分別為橢圓x2+5y2=5的左焦點和右焦點,且三個內(nèi)角A,B,C滿足關(guān)系式sinB-sin A=sinC.
(1)求線段AB的長度;
(2)求頂點C的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案