已知函數(shù)f(x)=alnx-4x,g(x)=-x2-3.
(Ⅰ)求函數(shù)f(x)在x=1處的切線方程;
(Ⅱ)若存在x0∈[e,e2],使得f(x0)<g(x0)成立,求實(shí)數(shù)a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求導(dǎo)數(shù),可得切線斜率,求出切點(diǎn)坐標(biāo),即可求函數(shù)f(x)在x=1處的切線方程;
(Ⅱ)h(x)=alnx+x2-4x+3,求導(dǎo)數(shù),分類討論,確定單調(diào)性,即可求實(shí)數(shù)a的取值范圍.
解答: 解:(Ⅰ)∵f(x)=alnx-4x,
∴f′(x)=
a
x
-4
,…(1分)
∴f′(1)=a-4,…(2分)
故切線方程為y=(a-4)x-a;                           …(4分)
(Ⅱ)h(x)=alnx+x2-4x+3,
∴h′(x)=
2x2-4x+a
x
,…(5分)
①若△=16-8a≤0,即a≥2,則h′(x)≥0,
則h(x)在(1,+∞)上單調(diào)遞增,又h(1)=0,不符舍去.       …(7分)
②若△>0,則a<2,
令h′(x)>0得x>1+
4-2a
2
,令h′(x)<0得0<x<1+
4-2a
2
,
則h(x)在(0,1+
4-2a
2
)上單調(diào)遞減,在(1+
4-2a
2
,+∞)單調(diào)遞增,…(9分)
又h(1)=0,則必有h(e)<0,…(10分)
即a+e2-4e+3<0,
∴a<-e2+4e-3.                                     …(12分)
點(diǎn)評(píng):本題主要考查了函數(shù)的極值,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),考查綜合利用數(shù)學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α的終邊在函數(shù)y=2x(x>0)的圖象上,則1-2sinαcosα-3cos2α的值( 。
A、-
2
5
B、±
2
5
C、-2
D、±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2a2lnx-x2(常數(shù)a>0).
(1)當(dāng)a=1時(shí),求曲線y=f(x)在x=1處的切線方程;
(2)討論函數(shù)f(x)在區(qū)間(1,e2)上零點(diǎn)的個(gè)數(shù)(e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

據(jù)有關(guān)規(guī)定,汽車尾氣中CO2(二氧化碳)的排放量超過(guò)130g/km,視為排放量超標(biāo).某市環(huán)保局對(duì)甲、乙兩型品牌車各抽取5輛進(jìn)行CO2排放量檢測(cè),所得數(shù)據(jù)如下表所示(單位:g/km).其中有兩輛乙型車的檢測(cè)數(shù)據(jù)不準(zhǔn)確,在表中用z,y表示.
甲型車 80 110 120 140 150
乙型車 100 120 x y 160
(Ⅰ)從被檢測(cè)的5輛甲型車中任取2輛,求這2輛車CO2排放量都不超標(biāo)的概率;
(Ⅱ)若5輛乙型車CO2排放量的平均值為120g/km,且80<x<130,求乙型車CO2排放量的方差的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=xx(x>0)是一個(gè)非常簡(jiǎn)潔而重要的函數(shù),為了討論其性質(zhì),可以利用對(duì)數(shù)恒等式將其變形:xx=e lnxx.仿照該變形,研究函數(shù)φ(x)=x 
1
x
(x>0)
(Ⅰ)求φ(x)=x 
1
x
(x>0)在x=1處的切線方程,并討論φ(x)=x 
1
x
(x>0)的單調(diào)性.
(Ⅱ)當(dāng)a>-1時(shí),討論關(guān)于x的方程φ′(x)=φ(x)(
1
x2
-
a
x
+
a-1
2
)解的個(gè)數(shù),(φ′(x)是φ(x)的導(dǎo)函數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2sin2x-1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)當(dāng)x∈[-
12
,
π
6
]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos(2x-
π
3
)+2sin2x,x∈R.
(1)求函數(shù)f(x)的最小正周期及對(duì)稱軸方程;
(2)當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)f(x)的最大值和最小值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)集A={a1,a2,…,an}(0≤a1<a2<…<an,n≥2,n∈N*)具有性質(zhì)P:?i,j(1≤i≤j≤n),ai+aj與aj-ai兩數(shù)中至少有一個(gè)屬于A.
(1)分別判斷數(shù)集{1,2,3,4}是否具有性質(zhì)P,并說(shuō)明理由;
(2)證明:a1=0;
(3)證明:當(dāng)n=5時(shí),a1,a2,a3,a4,a5成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

零向量
a
,
b
滿足|
a
|=2,|
b
|=2,且|
a
-2
b
|=2,則
a
,
b
夾角是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案