在四棱錐P-ABCD中,四邊形ABCD是平行四邊形,M,N分別是AB,PC的中點(diǎn),
(1)求證:MN∥平面PAD;
(2)若PA=PC且PD=PB,求證平面PAC⊥平面ABCD.
考點(diǎn):平面與平面垂直的判定,直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:(1)取CD的中點(diǎn)E,連接ME,NE,利用三角形的中位線定理可得NE∥PD,進(jìn)而得到NE∥平面PAD.由M是線段AB的中點(diǎn),E是CD的中點(diǎn),利用平行四邊形的性質(zhì)可得四邊形AMED是平行四邊形,可得ME∥平面PAD.進(jìn)而得到平面MNE∥平面PAD,利用面面平行的性質(zhì)可得MN∥平面PAD;
(2)設(shè)AC,BD交于O,證明PO⊥AC,PO⊥BD,可得PO⊥面ABCD,從而可證明平面PAC⊥平面ABCD.
解答: 證明:(1)取CD的中點(diǎn)E,連接ME,NE由N是線段CP的中點(diǎn),利用三角形的中位線定理可得NE∥PD,
∵NE?平面PAD,PD?平面PAD,
∴NE∥平面PAD.
由M是線段AB的中點(diǎn),E是CD的中點(diǎn),四邊形ABCD是平行四邊形,
∴四邊形AMED是平行四邊形,
∴ME∥AD,可得ME∥平面PAD.
又ME∩EN=E,∴平面MNE∥平面PAD,
∴MN∥平面PAD.
(2)設(shè)AC,BD交于O.
∵四邊形ABCD為平行四邊形,
∴O為AC,BD中點(diǎn),
∵PA=PC,PD=PB,
∴PO⊥AC,PO⊥BD,
∵AC,BD交于O,
∴PO⊥面ABCD,
又PO?面PAC,∴面PAC⊥面ABCD.
點(diǎn)評(píng):熟練掌握三角形中位線定理、平行四邊形的判定與性質(zhì)定理、線面與面面平行、垂直的判定與性質(zhì)定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,f(x)=x2-ax,g(x)=ax2+2bx+3,且a≠0.
(1)解關(guān)于x的不等式f(x)>6a2;
(2)當(dāng)x∈[1,3]時(shí),不等式f(x)+4>0恒成立,求a的取值范圍;
(3)對(duì)任意的x∈R,b∈[0,2],不等式g(x)≥x+b恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱椎P-ABCD的底面為直角梯形,∠ABC=90°,AD∥BC,BA=BC=1,AD=2,PA⊥平面ABCD.
(1)證明:CD⊥CP;
(2)若E是線段PA的中點(diǎn),證明BE∥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a3=2,a6=16,則公比q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點(diǎn).
(1)求證:DE∥平面PBC;
(2)求證:AB⊥PE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差d≠0,它的前n項(xiàng)和為Sn,若S5=70,且a2,a7,a22成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
1
Sn
}的前n項(xiàng)和為Tn,求Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和記作Sn,滿足 Sn=2an+3n-12(n∈N*
(Ⅰ)證明數(shù)列{an-3}為等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=nan,數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)A,B,C三款手機(jī),每款均有標(biāo)準(zhǔn)型和豪華型兩種型號(hào),某月的產(chǎn)量如表所示(單位:臺(tái)).
A B C
標(biāo)準(zhǔn)型 100 150 z
豪華型 300 450 600
按款分層抽樣的方法在本月生產(chǎn)的手機(jī)中抽取50臺(tái),其中A款抽到了10臺(tái).
(1)求z;
(2)用分層抽樣的方法在C款中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任取2臺(tái),求至少有一臺(tái)標(biāo)準(zhǔn)型手機(jī)的概率;
(3)用隨機(jī)抽樣的方法從B款手機(jī)中抽取8臺(tái)檢測(cè)性能,經(jīng)檢測(cè)它們的評(píng)分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2.把這8臺(tái)手機(jī)的評(píng)分看成一個(gè)整體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值超過0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由直線y=2x,x=1,x=2,y=0圍成的圖形的面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案