【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測(cè)試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績(jī)抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號(hào).

(1)如果從第8行第7列的數(shù)開始向右讀,請(qǐng)你依次寫出最先檢查的3個(gè)人的編號(hào);

(下面摘取了第7行到第9行)

(2)抽取的100人的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)缦卤恚撼煽?jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí);橫向,縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?/span>.

①若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是的值:

②在地理成績(jī)及格的學(xué)生中,已知,求數(shù)學(xué)成績(jī)優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

【答案】(1)785,667,199;(2)

【解析】分析:(1)根據(jù)隨機(jī)數(shù)表法逐次抽取三個(gè)樣本即可.(2)①根據(jù)在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是可求得,進(jìn)而可得.②列舉出所有基本事件的情況,然后根據(jù)古典概型概率公式求解

詳解

(1)在隨機(jī)數(shù)表中,從第8行第7列的數(shù)開始向右三位三位的讀數(shù),依次可得抽取的個(gè)體的編號(hào)為785,667,199.

(2)①由題意得,解得

.

的值分別為14,17.

②由題意得,

因?yàn)?/span>,,所以搭配的所有情況有:

,共14種.

設(shè)“,時(shí),數(shù)學(xué)成績(jī)優(yōu)秀的人數(shù)比及格的人數(shù)少”為事件,即.

則事件包含的基本事件有:,共2個(gè).

,

即數(shù)學(xué)成績(jī)優(yōu)秀的人數(shù)比及格的人數(shù)少的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合是非空集合的兩個(gè)不同子集.

(1)若,且的子集,求所有有序集合對(duì)的個(gè)數(shù);

(2)若,且的元素個(gè)數(shù)比的元素個(gè)數(shù)少,求所有有序集合對(duì)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某品種一批樹苗生長(zhǎng)情況,在該批樹苗中隨機(jī)抽取了容量為120的樣本,測(cè)量樹苗高度(單位:cm),經(jīng)統(tǒng)計(jì),其高度均在區(qū)間[19,31]內(nèi),將其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6組,制成如圖所示的頻率分布直方圖.其中高度為27 cm及以上的樹苗為優(yōu)質(zhì)樹苗.

(1)求圖中a的值;

(2)已知所抽取的這120棵樹苗來自于A,B兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:

A試驗(yàn)區(qū)

B試驗(yàn)區(qū)

合計(jì)

優(yōu)質(zhì)樹苗

20

非優(yōu)質(zhì)樹苗

60

合計(jì)

將列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為優(yōu)質(zhì)樹苗與A,B兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說明理由;

(3)用樣本估計(jì)總體若從這批樹苗中隨機(jī)抽取4棵,其中優(yōu)質(zhì)樹苗的棵數(shù)為X,求X的分布列和數(shù)學(xué)期望EX

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某地一天從時(shí)的溫度變化曲線近似滿足函數(shù).

(1)求該地區(qū)這一段時(shí)間內(nèi)溫度的最大溫差.

(2)若有一種細(xì)菌在之間可以生存,則在這段時(shí)間內(nèi),該細(xì)菌最多能存活多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】山東新舊動(dòng)能轉(zhuǎn)換綜合試驗(yàn)區(qū)是黨的十九大后獲批的首個(gè)區(qū)域性國(guó)家發(fā)展戰(zhàn)略,也是中國(guó)第一個(gè)以新舊動(dòng)能轉(zhuǎn)換為主題的區(qū)域發(fā)展戰(zhàn)略.泰安某高新技術(shù)企業(yè)決定抓住發(fā)展機(jī)遇,加快企業(yè)發(fā)展.已知該企業(yè)的年固定成本為500萬元,每生產(chǎn)設(shè)備臺(tái),需另投入成本萬元.若年產(chǎn)量不足80臺(tái),則;若年產(chǎn)量不小于80臺(tái),則.每臺(tái)設(shè)備售價(jià)為100萬元,通過市場(chǎng)分析,該企業(yè)生產(chǎn)的設(shè)備能全部售完.

1)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)量(臺(tái))的關(guān)系式;

2)年產(chǎn)量為多少臺(tái)時(shí),該企業(yè)所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,正項(xiàng)等比數(shù)列中, ,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如下表,經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)yx具有線性相關(guān)關(guān)系.

價(jià)格x(元/kg

10

15

20

25

30

日需求量ykg

11

10

8

6

5

1)根據(jù)上表給出的數(shù)據(jù),求出yx的線性回歸方程;

2)利用(1)中的回歸方程,當(dāng)價(jià)格/kg時(shí),日需求量y的預(yù)測(cè)值為多少?

(參考公式:線性回歸方程,其中,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在以下命題中:

①三個(gè)非零向量,不能構(gòu)成空間的一個(gè)基底,則,共面;

②若兩個(gè)非零向量,與任何一個(gè)向量都不能構(gòu)成空間的一個(gè)基底,則,共線;

③對(duì)空間任意一點(diǎn)和不共線的三點(diǎn),,若,則,,,四點(diǎn)共面

④若是兩個(gè)不共線的向量,且,則構(gòu)成空間的一個(gè)基底

⑤若為空間的一個(gè)基底,則構(gòu)成空間的另一個(gè)基底;

其中真命題的個(gè)數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案