【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測(cè)試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績(jī)抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號(hào).
(1)如果從第8行第7列的數(shù)開始向右讀,請(qǐng)你依次寫出最先檢查的3個(gè)人的編號(hào);
(下面摘取了第7行到第9行)
(2)抽取的100人的數(shù)學(xué)與地理的水平測(cè)試成績(jī)?nèi)缦卤恚撼煽?jī)分為優(yōu)秀、良好、及格三個(gè)等級(jí);橫向,縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī),例如:表中數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?/span>.
①若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是,求的值:
②在地理成績(jī)及格的學(xué)生中,已知,求數(shù)學(xué)成績(jī)優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.
【答案】(1)785,667,199;(2).
【解析】分析:(1)根據(jù)隨機(jī)數(shù)表法逐次抽取三個(gè)樣本即可.(2)①根據(jù)在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是可求得,進(jìn)而可得.②列舉出所有基本事件的情況,然后根據(jù)古典概型概率公式求解.
詳解:
(1)在隨機(jī)數(shù)表中,從第8行第7列的數(shù)開始向右三位三位的讀數(shù),依次可得抽取的個(gè)體的編號(hào)為785,667,199.
(2)①由題意得,解得,
∴.
故的值分別為14,17.
②由題意得,
因?yàn)?/span>,,所以搭配的所有情況有:
,共14種.
設(shè)“,時(shí),數(shù)學(xué)成績(jī)優(yōu)秀的人數(shù)比及格的人數(shù)少”為事件,即.
則事件包含的基本事件有:,共2個(gè).
∴,
即數(shù)學(xué)成績(jī)優(yōu)秀的人數(shù)比及格的人數(shù)少的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合是非空集合的兩個(gè)不同子集.
(1)若,且是的子集,求所有有序集合對(duì)的個(gè)數(shù);
(2)若,且的元素個(gè)數(shù)比的元素個(gè)數(shù)少,求所有有序集合對(duì)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某品種一批樹苗生長(zhǎng)情況,在該批樹苗中隨機(jī)抽取了容量為120的樣本,測(cè)量樹苗高度(單位:cm),經(jīng)統(tǒng)計(jì),其高度均在區(qū)間[19,31]內(nèi),將其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6組,制成如圖所示的頻率分布直方圖.其中高度為27 cm及以上的樹苗為優(yōu)質(zhì)樹苗.
(1)求圖中a的值;
(2)已知所抽取的這120棵樹苗來自于A,B兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:
A試驗(yàn)區(qū) | B試驗(yàn)區(qū) | 合計(jì) | |
優(yōu)質(zhì)樹苗 | 20 | ||
非優(yōu)質(zhì)樹苗 | 60 | ||
合計(jì) |
將列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為優(yōu)質(zhì)樹苗與A,B兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說明理由;
(3)用樣本估計(jì)總體,若從這批樹苗中隨機(jī)抽取4棵,其中優(yōu)質(zhì)樹苗的棵數(shù)為X,求X的分布列和數(shù)學(xué)期望EX.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某地一天從時(shí)的溫度變化曲線近似滿足函數(shù).
(1)求該地區(qū)這一段時(shí)間內(nèi)溫度的最大溫差.
(2)若有一種細(xì)菌在到之間可以生存,則在這段時(shí)間內(nèi),該細(xì)菌最多能存活多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】山東新舊動(dòng)能轉(zhuǎn)換綜合試驗(yàn)區(qū)是黨的十九大后獲批的首個(gè)區(qū)域性國(guó)家發(fā)展戰(zhàn)略,也是中國(guó)第一個(gè)以新舊動(dòng)能轉(zhuǎn)換為主題的區(qū)域發(fā)展戰(zhàn)略.泰安某高新技術(shù)企業(yè)決定抓住發(fā)展機(jī)遇,加快企業(yè)發(fā)展.已知該企業(yè)的年固定成本為500萬元,每生產(chǎn)設(shè)備臺(tái),需另投入成本萬元.若年產(chǎn)量不足80臺(tái),則;若年產(chǎn)量不小于80臺(tái),則.每臺(tái)設(shè)備售價(jià)為100萬元,通過市場(chǎng)分析,該企業(yè)生產(chǎn)的設(shè)備能全部售完.
(1)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)量(臺(tái))的關(guān)系式;
(2)年產(chǎn)量為多少臺(tái)時(shí),該企業(yè)所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,正項(xiàng)等比數(shù)列中, ,,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如下表,經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)y與x具有線性相關(guān)關(guān)系.
價(jià)格x(元/kg) | 10 | 15 | 20 | 25 | 30 |
日需求量y(kg) | 11 | 10 | 8 | 6 | 5 |
(1)根據(jù)上表給出的數(shù)據(jù),求出y與x的線性回歸方程;
(2)利用(1)中的回歸方程,當(dāng)價(jià)格元/kg時(shí),日需求量y的預(yù)測(cè)值為多少?
(參考公式:線性回歸方程,其中,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在以下命題中:
①三個(gè)非零向量,,不能構(gòu)成空間的一個(gè)基底,則,,共面;
②若兩個(gè)非零向量,與任何一個(gè)向量都不能構(gòu)成空間的一個(gè)基底,則,共線;
③對(duì)空間任意一點(diǎn)和不共線的三點(diǎn),,,若,則,,,四點(diǎn)共面
④若,是兩個(gè)不共線的向量,且,則構(gòu)成空間的一個(gè)基底
⑤若為空間的一個(gè)基底,則構(gòu)成空間的另一個(gè)基底;
其中真命題的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com