8.已知實數(shù)a滿足1<a<2,命題p:函數(shù)y=lg(2-ax)在區(qū)間[0,1]上是減函數(shù);命題q:x2<1是x<a的充分不必要條件,則(  )
A.p或q為真命題B.p且q為假命題C.?p且q為真命題D.?p或?q為真命題

分析 p:由“函數(shù)y=lg(2-ax)在區(qū)間[0,1]上是減函數(shù)”結(jié)合復(fù)合函數(shù)的單調(diào)性可求解;q:由“x2<1是x<a的充分不必要條件”結(jié)合集合法可求解.最后用““p或q”一真則真,“p且q”一假則假”來確定選項.

解答 解:p:∵函數(shù)y=lg(2-ax)在區(qū)間[0,1]上是減函數(shù),
∴a>0,2-ax>0在[0,1]恒成立,
∴0<a<2,
q:∵x2<1是x<a的充分不必要條件,
∴a≥1,
而實數(shù)a滿足1<a<2,
∴p或q為真命題.
故選:A.

點評 本題主要通過常用邏輯用語來考查復(fù)合函數(shù)的單調(diào)性和不等式的解法及集合的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知曲線C1的參數(shù)方程是$\left\{\begin{array}{l}x=cosφ\\ y=2sinφ\end{array}\right.$(φ為參數(shù)),以直角坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是$ρsinθ-2ρcosθ=4\sqrt{2}$.
(Ⅰ)求曲線C2的直角坐標方程;
(Ⅱ)設(shè)P為曲線C1上任意一點,Q為曲線C2上任意一點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,且AC=BD,平面PA⊥平面ABCD,E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)在△PAD中,AP=2,AD=2$\sqrt{3}$,PD=4,三棱錐E-ACD的體積是$\sqrt{3}$,求二面角D-AE-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.(1+a+a2)(a-$\frac{1}{a}}$)6的展開式中的常數(shù)項為(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若曲線$\left\{\begin{array}{l}{x=2-tsin30°}\\{y=-1+tsin30°}\end{array}\right.$(t為參數(shù)) 與曲線x2+y2=8相交于B,C兩點,則|BC|的值為(  )
A.$2\sqrt{7}$B.$\sqrt{60}$C.$7\sqrt{2}$D.$\sqrt{30}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A=[0,4),集合B={x|x2-2x≥3,x∈N},則A∩B=(  )
A.{x|3≤x<4}B.{x|0≤x<3}C.{3}D.{3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.數(shù)列{an} 滿足a1=1,an+1=2an+3(n∈N*),則a4=29.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)數(shù)列{an}的前n項和為Sn,且a1=1,nan+1=2Sn,n∈N*.
(1)求數(shù)列{an}的通項公式;
(2)已知f(log2x)=x2-x,若存在實數(shù)k,對于任意的自然數(shù)n(n≥2),f(an)≥k•4n,求k的最大值.
(3)在(2)條件下,求證:$\frac{1}{f({a}_{1})}+\frac{1}{f({a}_{2})}$+…+$\frac{1}{f({a}_{n})}$<$\frac{11}{18}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{xlnx}{x-1}$.求曲線f(x)在點(e,f(e))(e為自然對數(shù)的底數(shù))處的切線方程.

查看答案和解析>>

同步練習(xí)冊答案