19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)為F,過(guò)點(diǎn)F作雙曲線C的一條漸近線的垂線,垂足為H,點(diǎn)P在雙曲線上,且$\overrightarrow{FP}$=3$\overrightarrow{FH}$則雙曲線的離心率為(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{\sqrt{13}}{2}$D.$\sqrt{13}$

分析 根據(jù)向量條件,求出P的坐標(biāo),代入雙曲線方程,即可得出結(jié)論.

解答 解:由題意,設(shè)P(x,y),直線FH的方程為y=$\frac{a}$(x+c),
與漸近線y=-$\frac{a}$x聯(lián)立,可得H的坐標(biāo)為(-$\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
∵$\overrightarrow{FP}$=3$\overrightarrow{FH}$,
∴(x+c,y)=3(-$\frac{{a}^{2}}{c}$+c,$\frac{ab}{c}$),
∴x=-$\frac{3{a}^{2}}{c}$+2c,y=$\frac{3ab}{c}$,
代入雙曲線方程可得,$\frac{(-\frac{3{a}^{2}}{c}+2c)^{2}}{{a}^{2}}-\frac{9{a}^{2}}{{c}^{2}}$=1,
化簡(jiǎn)可得$\frac{4{c}^{2}}{{a}^{2}}$=13,
∴e=$\frac{c}{a}$=$\frac{\sqrt{13}}{2}$.
故選C.

點(diǎn)評(píng) 本題考查雙曲線的方程與性質(zhì),考查向量知識(shí)的運(yùn)用,確定P的坐標(biāo)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線C2:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0)有相同的焦點(diǎn)F1,F(xiàn)2,點(diǎn)P是兩曲線的一個(gè)公共點(diǎn),且PF1⊥PF2,e1,e2分別是兩曲線C1,C2的離心率,則2e12+$\frac{{e}_{2}^{2}}{2}$的最小值為(  )
A.1B.$\frac{9}{4}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)g(x)=$\frac{lnx}{x}$.
(Ⅰ)求函數(shù)y=g(x)的圖象在x=$\frac{1}{e}$處的切線方程;
(Ⅱ)求y=g(x)的最大值;
(Ⅲ)令f(x)=ax2+bx-x•(g(x))(a,b∈R).若a≥0,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.計(jì)算${∫}_{0}^{2}$($\sqrt{4-{x}^{2}}$+x2)dx的結(jié)果是π+$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,M,N分別是AB,PC的中點(diǎn),若ABCD是平行四邊形.
(1)求證:MN∥平面PAD.
(2)若PA=AD=2a,MN與PA所成的角為30°.求MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(bmodm),例如10≡2(bmod4).下面程序框圖的算法源于我國(guó)古代聞名中外的《中國(guó)剩余定理》.執(zhí)行該程序框圖,則輸出的i等于( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若a=log43,則2a+2-a=$\frac{4\sqrt{3}}{3}$;方程log2(9x-1-5)=log2(3x-1-2)+2的解為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}中,a1=2,an+1=2an+3•2n,則數(shù)列{an}的通項(xiàng)公式an=(3n-1)•2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)x∈R,則x=1是x3=x的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案