過點(diǎn)(2,2)與拋物線y2=8x只有一個(gè)公共點(diǎn)的直線有幾條?
考點(diǎn):拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:判斷點(diǎn)(2,2)與拋物線的位置關(guān)系,從而得到結(jié)論.
解答: 解:拋物線y2=8x的焦點(diǎn)為(2,0),(2,2)點(diǎn)在拋物線內(nèi)部,
當(dāng)過點(diǎn)(2,2)的直線的斜率等于0時(shí),直線的方程為 y=2,與拋物線y2=8x的軸平行,只有一個(gè)公共點(diǎn).
過點(diǎn)(2,2)與拋物線y2=8x只有一個(gè)公共點(diǎn)的直線有1條.
點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,是解題的關(guān)鍵.基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log0.34,b=log34,c=0.32,則a,b,c的大小關(guān)系是( 。
A、a<b<c
B、a<c<b
C、c<b<a
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期為
3

(1)求ω的值;
(2)求函數(shù)f(x)的在[0,
π
3
]上的值域;
(3)若函數(shù)y=g(x)的圖象是由y=f(x)的圖象向右平移
π
2
個(gè)單位長度得到,求y=g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
a2x
(a≠0)的定義域?yàn)椋ā 。?/div>
A、[0,+∞)
B、(0,+∞)
C、{0}
D、以上答案都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知lg2=a,lg3=b,則lg45的值用a,b表示為(  )
A、1+b2-a
B、a+3b
C、1+2b-a
D、a+b+b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-
3
4
,
(1)求tan(α-
π
4
)的值;
(2)求
2snα-3cosα
3sinα-2cosα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC中,a、b、c分別為內(nèi)角A、B、C的對(duì)邊,已知sin2A+cos2A=1-sinA.
(1)求sin2A的值;
(2)若(c+b)2=4bc+4(b<c),且sinC=2sinB,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為l的三個(gè)正方形面板粘合成一個(gè)空間圖形,其水平放置的直觀圖如圖所示.
(1)若E、F分別是A1B1、BB1的中點(diǎn),試判斷D1E與CF是否共面,并說明理由;
(2)以此空間圖形為盛水容器,如果能保證粘合處都不漏水,那么此容器最多能盛多少體積的水?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知車輪旋轉(zhuǎn)的角度與時(shí)間的平方成正比,如果車輛啟動(dòng)后車輪轉(zhuǎn)動(dòng)第一圈需要0.8s,求轉(zhuǎn)動(dòng)開始后第3.2s時(shí)的瞬時(shí)角速度.

查看答案和解析>>

同步練習(xí)冊(cè)答案