如圖,四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,PB⊥BC,PD⊥CD,且PA=2,E為PD中點(diǎn).
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求二面角E-AC-D的大小;
(Ⅲ)若F為線段BC的中點(diǎn),求點(diǎn)D到平面PAF的距離.

解:(Ⅰ)證明:∵底面ABCD為正方形,
∴BC⊥AB,又BC⊥PB,
∴BC⊥平面PAB,
∴BC⊥PA.
同理CD⊥PA,
∴PA⊥平面ABCD.
(Ⅱ)解:設(shè)M為AD中點(diǎn),連接EM,
又E為PD中點(diǎn),
可得EM∥PA,從而EM⊥底面ABCD.
過M作AC的垂線MN,垂足為N,連接EN.
由三垂線定理有EN⊥AC,
∴∠ENM為二面角E-AC-D的平面角.
在Rt△EMN中,可求得EM=1,MN=,
∴tanENM=
∴二面角E-AC-D的大小為arctan
(Ⅲ)解:過D做AF的垂線DG,垂足為G,
∵PA⊥平面ABCD,
∴平面PAF⊥平面ABCD,
∴DG⊥平面PAF,
∴DG為點(diǎn)D到平面PAF的距離,
由F為BC中點(diǎn),可得AF=
又△ABF與△DGA相似,
可得
∴DG=
即點(diǎn)D到平面PAF的距離為
分析:(I)由題意及正方形的特點(diǎn),利用BC⊥AB,BC⊥PB得到BC⊥平面PAB,進(jìn)而得到BC⊥PA,在利用CD⊥PA,得到線面垂直;
(II)由題意及圖形,利用三垂線定理得到二面角的平面角,并在三角形中解出即可;
(III)由PA⊥平面ABCD,得到平面PAF⊥平面ABCD,進(jìn)而得到DG⊥平面PAF,然后利用△ABF與△DGA相似,求出點(diǎn)D到平面PAF的距離.
點(diǎn)評:此題重點(diǎn)考查了線線垂直,線面垂直的判定與性質(zhì);還考查了利用三垂線定理求解出二面角的平面角一常用方法;還考查了利用反三角函數(shù)的知識表示角的大小;在計(jì)算第三問的距離是還考查了利用三角形的相似解出線段長度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點(diǎn).求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點(diǎn)E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點(diǎn)F是PB中點(diǎn).
(Ⅰ)若E為BC中點(diǎn),證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點(diǎn),證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設(shè)PC與AD的夾角為θ.
(1)求點(diǎn)A到平面PBD的距離;
(2)求θ的大。划(dāng)平面ABCD內(nèi)有一個(gè)動點(diǎn)Q始終滿足PQ與AD的夾角為θ,求動點(diǎn)Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案