設(shè)曲線C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
(θ為參數(shù)),直線l的參數(shù)方程為
x=1+2t
y=1+t
(t為參數(shù)),則直線l被曲線C截得的弦長(zhǎng)為
 
考點(diǎn):參數(shù)方程化成普通方程
專題:選作題,坐標(biāo)系和參數(shù)方程
分析:把參數(shù)方程中的參數(shù)消去可分別求得直線和圓的方程,進(jìn)而可知圓的圓心和半徑,利用點(diǎn)到直線的距離求得圓心到直線的距離,進(jìn)而利用勾股定理求得弦長(zhǎng).
解答: 解:依題意可知直線l的方程為x-2y+1=0,圓的方程為(x-2)2+(y+1)2=9
∴圓心為(2,-1),半徑為3,
∴圓心到直線的距離d=
5
5
=
5

則弦長(zhǎng)為2
9-5
=4.
故答案為:4
點(diǎn)評(píng):本題主要考查了直線與圓相交的性質(zhì),直線和圓的參數(shù)方程.解題的過(guò)程中主要是通過(guò)消去參數(shù),把參數(shù)方程轉(zhuǎn)化為一般的方程來(lái)解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.若bcosC+CcosB=2asinA,則△ABC的形狀是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={0,2,3},B={x|x2-2x=0},則A∩B=(  )
A、{2}B、{0,2}
C、{0,3}D、{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)計(jì)算法輸入一個(gè)5位數(shù)的整數(shù)n,輸出n的各位數(shù)的和(比如輸入n=13546,由于1+3+5+4+6=19,則輸出19),并用基本語(yǔ)句描述該算法.(注:可以用運(yùn)算符號(hào)“\”表示取商,例如:16÷3=5…1,即16\3=5,122÷10=12…2,即122\10=12).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明函數(shù)f(x)=
3x
在[0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果為( 。
A、8B、5C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明等式:
1-cosx+sinx
1+sinx+cosx
=
sinx
1+cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,已知c=2,C=
π
3

(1)若△ABC的面積等于
3
,求a,b;
(2)若sinC+sin(B-A)=2sin2A,且b<a,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x>0,則4-x-
1
x
的最大值是( 。
A、6B、4C、3D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案