【題目】為了緩解日益擁堵的交通狀況,不少城市實(shí)施車牌競價(jià)策略,以控制車輛數(shù)量.某地車牌競價(jià)的基本規(guī)則是:①“盲拍”,即所有參與競拍的人都要網(wǎng)絡(luò)報(bào)價(jià)一次,每個(gè)人不知曉其他人的報(bào)價(jià),也不知道參與當(dāng)期競拍的總?cè)藬?shù);②競價(jià)時(shí)間截止后,系統(tǒng)根據(jù)當(dāng)期車牌配額,按照競拍人的出價(jià)從高到低分配名額.某人擬參加2018年5月份的車牌競拍,他為了預(yù)測最低成交價(jià),根據(jù)競拍網(wǎng)站的數(shù)據(jù),統(tǒng)計(jì)了最近5個(gè)月參與競拍的人數(shù)(見下表):
(1)由收集數(shù)據(jù)的散點(diǎn)圖發(fā)現(xiàn),可用線性回歸模型擬合競拍人數(shù)y(萬人)與月份編號(hào)t之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求y關(guān)于t的線性回歸方程:,并預(yù)測2018年5月份參與競拍的人數(shù).
(2)某市場調(diào)研機(jī)構(gòu)從擬參加2018年5月份車牌競拍人員中,隨機(jī)抽取了200人,對(duì)他們的擬報(bào)價(jià)價(jià)格進(jìn)行了調(diào)查,得到如下頻數(shù)分布表和頻率分布直方圖:
(i)求的值及這200位竟拍人員中報(bào)價(jià)大于5萬元的人數(shù);
(ii)若2018年5月份車牌配額數(shù)量為3000,假設(shè)競拍報(bào)價(jià)在各區(qū)間分布是均勻的,請(qǐng)你根據(jù)以上抽樣的數(shù)據(jù)信息,預(yù)測(需說明理由)競拍的最低成交價(jià).
參考公式及數(shù)據(jù):①,其中;
②
【答案】(1)2萬人;(2)(i)a=40,b=0.15,人數(shù)為60;(ii)6萬元.
【解析】
(1)根據(jù)公式計(jì)算出線性回歸方程,再利用它預(yù)測人數(shù).
(2)(i)先根據(jù)上的頻率計(jì)算出,再根據(jù)頻率之和為1計(jì)算出,最后根據(jù)大于5萬元的頻率計(jì)算相應(yīng)的人數(shù);
(ii)根據(jù)(1)的結(jié)論可知5月共有20000人參與競拍,因此可以得到報(bào)價(jià)在最低價(jià)之上的人數(shù)的頻率,再根據(jù)頻率分布直方圖得到最低價(jià).
(1)易知,,
,
,
則關(guān)于的線性回歸方程為,
當(dāng)時(shí),,即2018年5月份參與競拍的人數(shù)估計(jì)為2萬人.
(2)(i)由解得;
由頻率和為1,得,解得,
位競拍人員報(bào)價(jià)大于5萬元得人數(shù)為人;
(ii)2018年5月份實(shí)際發(fā)放車牌數(shù)量為3000,根據(jù)競價(jià)規(guī)則,報(bào)價(jià)在最低成交價(jià)以上人數(shù)占總?cè)藬?shù)比例為;又由頻率分布直方圖知競拍報(bào)價(jià)大于6萬元的頻率為;
所以,根據(jù)統(tǒng)計(jì)思想(樣本估計(jì)總體)可預(yù)測2018年5月份競拍的最低成交價(jià)為萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某重點(diǎn)中學(xué)100位學(xué)生在市統(tǒng)考中的理科綜合分?jǐn)?shù),以, , , , , , 分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求理科綜合分?jǐn)?shù)的眾數(shù)和中位數(shù);
(3)在理科綜合分?jǐn)?shù)為, , , 的四組學(xué)生中,用分層抽樣的方法抽取11名學(xué)生,則理科綜合分?jǐn)?shù)在的學(xué)生中應(yīng)抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為實(shí)常數(shù).
(1)若當(dāng)時(shí),在區(qū)間上的最大值為,求的值;
(2)對(duì)任意不同兩點(diǎn),,設(shè)直線的斜率為,若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的年平均維修費(fèi)用(萬元)(即維修費(fèi)用之和除以使用年限),有如下的統(tǒng)計(jì)資料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點(diǎn)圖;
(2)求關(guān)于的線性回歸方程;
(3)估計(jì)使用年限為10年時(shí)所支出的年平均維修費(fèi)用是多少?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某體育公司對(duì)最近6個(gè)月內(nèi)的市場占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如表:
(1)可用線性回歸模型擬合與之間的關(guān)系嗎?如果能,請(qǐng)求出關(guān)于的線性回歸方程,如果不能,請(qǐng)說明理由;
(2)公司決定再采購,兩款車擴(kuò)大市場,,兩款車各100輛的資料如表:
平均每輛車每年可為公司帶來收入500元,不考慮采購成本之外的其他成本,假設(shè)每輛車的使用壽命都是整數(shù)年,用每輛車使用壽命的頻率作為概率,以每輛車產(chǎn)生利潤的期望值作為決策依據(jù),應(yīng)選擇采購哪款車型?
參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù);
回歸直線方程,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知、兩個(gè)城鎮(zhèn)相距20公里,設(shè)是中點(diǎn),在的中垂線上有一高鐵站,的距離為10公里.為方便居民出行,在線段上任取一點(diǎn)(點(diǎn)與、不重合)建設(shè)交通樞紐,從高鐵站鋪設(shè)快速路到處,再鋪設(shè)快速路分別到、兩處.因地質(zhì)條件等各種因素,其中快速路造價(jià)為1.5百萬元/公里,快速路造價(jià)為1百萬元/公里,快速路造價(jià)為2百萬元/公里,設(shè),總造價(jià)為(單位:百萬元).
(1)求關(guān)于的函數(shù)關(guān)系式,并指出函數(shù)的定義域;
(2)求總造價(jià)的最小值,并求出此時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱臺(tái)的上下底面分別是邊長為2和4的正方形, = 4且 ⊥底面,點(diǎn)為的中點(diǎn).
(Ⅰ)求證: 面 ;
(Ⅱ)在邊上找一點(diǎn),使∥面,
并求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com