在△ABC中,已知tanA=,tanB=,且最長邊為1.

(Ⅰ)求證:∠C=π;(Ⅱ)求△ABC最短邊的長.

答案:
解析:

  (Ⅰ)∵tanA= ,tanB= ,∴tan(A+B)= =1,

  (Ⅰ)∵tanA=,tanB=,∴tan(A+B)==1,

  ∵在△ABC中,0<A+B<π,∴∠A+∠B=,∴∠C=π.

  (Ⅱ)∵∠C=π,∴∠C所對邊最長,∠B所對邊最短且為銳角,

  ∵由tanB=,∴sinB=,

  ∵c=1,∴由正弦定理,得最短邊b=


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044

在三棱錐A-BCD中,E、F分別是AD、BC上的點,且,AB=CD=3,EF=,求AB、CD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學 題型:044

在以O為原點的直角坐標系中,點A(4,-3)為△OAB的直角頂點.已知|AB|=2|OA|,且點B的縱坐標大于零.

(Ⅰ)求向量的坐標;

(Ⅱ)求圓x2-6x+y2+2y=0關于直線OB對稱的圓的方程;

(Ⅲ)是否存在實數(shù)a,使拋物線y=ax2-1上總有關于直線OB對稱的兩個點?若不存在,說明理由;若存在,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:047

OACB中,BD=BC,OD與AB交于E,求證:BE=BA.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年安徽省高一第二學期期中考試數(shù)學試卷 題型:解答題

 

三、解答題(共75分)

【題文】

 (12分) 在

    (I)求AB的值;

    (Ⅱ)求的值。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

試題大類:高考真題;題型:解答題;學期:2008年;單元:2008年普通高等學校夏季招生考試數(shù)學文史類(重慶卷);知識點:空間直線和平面;難度:較難;其它備注:20主觀題;分值:12$如圖,α和β為平面,α∩β=l,A∈α,B∈β,AB=5,A,B在棱l上的射影分別為A′,B′,AA′=3,BB′=2.若二面角α-l-β的大小為,求:

(1)點B到平面α的距離;

(2)異面直線l與AB所成的角(用反三角函數(shù)表示).

查看答案和解析>>

同步練習冊答案