【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)證明:.
【答案】(1)見解析;(2)見解析
【解析】
(1),分和兩種情況討論單調(diào)性即可;(2)法一:將不等式變形為,構(gòu)造函數(shù),證明即可;法二:將不等式變形為,分別設(shè),求導(dǎo)證明即可.
(1) ,
當(dāng)時,,函數(shù)的單調(diào)增區(qū)間為,無減區(qū)間;
當(dāng)時,,當(dāng),,單增區(qū)間為上增,單調(diào)減區(qū)間為上遞減。
(2)解法1: ,即證,令,,,令,,
在,上單調(diào)遞增,,,故存在唯一的使得,)在上單調(diào)遞減,在上單調(diào)遞增,,,當(dāng)時, , 時,; 所以在上單調(diào)遞減,在上單調(diào)遞增,,得證.
解法2:要證: ,即證: ,令,,當(dāng)時,,時,;所以在上單調(diào)遞減,在上單調(diào)遞增, ; 令,,,當(dāng) 時,,時,; 所以在上單調(diào)遞增,在上單調(diào)遞減,,,,得證.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的焦距為2,橢圓的左右焦點分別為,過右焦點作軸的垂線交橢圓于兩點,.
(1)求橢圓的方程;
(2)過右焦點作直線交橢圓于兩點,若△的內(nèi)切圓的面積為,求△的面積;
(3)已知,為圓上一點(在軸右側(cè)),過作圓的切線交橢圓于兩點,試問△的周長是否為一定值?若是,求出該定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9月,臺風(fēng)“山竹”在我國多個省市登陸,造成直接經(jīng)濟(jì)損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.
(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)臺風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機(jī)抽取2戶進(jìn)行重點幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)甲,乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為和,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設(shè)甲,乙兩組的研發(fā)是相互獨立的.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品研發(fā)成功,預(yù)計企業(yè)可獲得萬元,若新產(chǎn)品研發(fā)成功,預(yù)計企業(yè)可獲得利潤萬元,求該企業(yè)可獲得利潤的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點,動點M在橢圓C:上,該橢圓的左頂點A到直線的距離為.
求橢圓C的標(biāo)準(zhǔn)方程;
若線段MN平行于y軸,滿足,動點P在直線上,滿足證明:過點N且垂直于OP的直線過橢圓C的右焦點F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)學(xué)生體質(zhì),合肥一中組織體育社團(tuán),某班級有4人積極報名參加籃球和足球社團(tuán),每人只能從兩個社團(tuán)中選擇其中一個社團(tuán),大家約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己參加哪個社團(tuán),擲出點數(shù)為5或6的人參加籃球社團(tuán),擲出點數(shù)小于5的人參加足球社團(tuán).
(1)求這4人中恰有1人參加籃球社團(tuán)的概率;
(2)用,分別表示這4人中參加籃球社團(tuán)和足球社團(tuán)的人數(shù),記隨機(jī)變量X為和之差的絕對值,求隨機(jī)變量X的分布列與數(shù)學(xué)期望 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極值,對任意恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為.如果存在實數(shù)a和函數(shù)h(x),其中h(x)對任意的x∈(1,+∞)都有h(x)>0,使得=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a).
(1)設(shè)函數(shù),其中b為實數(shù).
①求證:函數(shù)f(x)具有性質(zhì)P(a).②求函數(shù)f(x)的單調(diào)區(qū)間.
(2)已知函數(shù)g(x)具有性質(zhì)P(2),給定x1,x2∈(1,+∞),x1<x2.設(shè)m為實數(shù), ,且.若,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率,短軸的一個端點到焦點的距離為.
(1)求橢圓的方程;
(2)斜率為的直線與橢圓交于,兩點,線段的中點在直線上,求直線與軸交點縱坐標(biāo)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com