已知四邊形ABCD為平行四邊形,BC⊥平面ABE,AE⊥BE,BE = BC = 1,AE = ,M為線段AB的中點,N為線段DE的中點,P為線段AE的中點。
(1)求證:MN⊥EA;
(2)求四棱錐M – ADNP的體積。
科目:高中數(shù)學 來源: 題型:解答題
是雙曲線 上一點,、分別是雙曲線的左、右頂點,直線,的斜率之積為.
(1)求雙曲線的離心率;
(2)過雙曲線的右焦點且斜率為1的直線交雙曲線于,兩點,為坐標原點,為雙曲線上一點,滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F為CE上的點,且BF平面AC E.
(1)求證:AEBE;
(2)求三棱錐D—AEC的體積;
(3)求二面角A—CD—E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點.
(Ⅰ)求證AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大。
(Ⅲ)試在線段AC上確定一點P,使得PF與BC所成的角是60°.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且G是EF的中
點.
(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在△中,,,點在上,交于,交于.沿將△翻折成△,使平面平面;沿將△翻折成△,使平面平面.
(Ⅰ)求證:平面.
(Ⅱ)設(shè),當為何值時,二面角的大小為?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖:在三棱錐D-ABC中,已知是正三角形,AB平面BCD,,E為BC的中點,F(xiàn)在棱AC上,且
(1)求三棱錐D-ABC的表面積;
(2)求證AC⊥平面DEF;
(3)若M為BD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com