某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個(gè)班進(jìn)行千秋測(cè)試.成績(jī)?cè)?.9米以上的為合格.把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫(huà)出頻率分布直方圖的 一部分(如圖),已知從左到右前5個(gè)小組的頻率分別為0.04,0.10,0.14,0.28,0.30.第6小組的頻數(shù)是7.
(1)求這次鉛球測(cè)試成績(jī)合格的人數(shù);
(2)若由直方圖來(lái)估計(jì)這組數(shù)據(jù)的中位數(shù),指出它在第幾組內(nèi),并說(shuō)明理由;
(3)若參加此次測(cè)試的學(xué)生中,有9人的成績(jī)?yōu)閮?yōu)秀,現(xiàn)在要從成績(jī)優(yōu)秀的學(xué)生中,隨機(jī)選出2人參加“畢業(yè)運(yùn)動(dòng)會(huì)”已知a、b的成績(jī)均為優(yōu)秀,求兩人至少有1人入選的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,頻率分布直方圖,眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計(jì)
分析:(1)由直方圖易得第6小組的頻率為1-(0.04+0.10+0.14+0.28+0.30)=0.14,可得測(cè)試總?cè)藬?shù)為
7
0.14
=50(人),易得合格人數(shù);
(2)直方圖中中位數(shù)兩側(cè)的面積相等,即頻率相等,由圖中數(shù)據(jù)可得中位數(shù)位于第4組內(nèi);
(3)從成績(jī)優(yōu)秀的9人中任意選出2人共有
C
2
9
=36種,其中a,b都沒(méi)有入選的情況有
C
2
7
=21種,可得a,b至少有1人入選的情況有15種,由概率公式可得.
解答: 解:(1)第6小組的頻率為1-(0.04+0.10+0.14+0.28+0.30)=0.14,
∴此次測(cè)試總?cè)藬?shù)為
7
0.14
=50(人),
∴第4、5、6組成績(jī)均合格,人數(shù)為(0.28+0.30+0.14)×50=36(人)
(2)直方圖中中位數(shù)兩側(cè)的面積相等,即頻率相等,
而前三組的頻率和為0.28,前四組的頻率和為0.56,
∴中位數(shù)位于第4組內(nèi).
(3)從成績(jī)優(yōu)秀的9人中任意選出2人共有
C
2
9
=36種,
其中a,b都沒(méi)有入選的情況有
C
2
7
=21種
∴其中a,b至少有1人入選的情況有36-21=15種,
∴a,b兩人至少有1人入選的概率為P=
15
36
=
5
12
點(diǎn)評(píng):本題考查古典概型及其概率公式,涉及直方圖和數(shù)字特征,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={(x,y)|x+y=0},B={(x,y)|x-y=0},則集合A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P在橢圓上,△PF1F2的周長(zhǎng)為16,直線2x+y=4經(jīng)過(guò)橢圓上的頂點(diǎn).
(1)求橢圓C的方程;
(2)直線l與橢圓交于A、B兩點(diǎn),若以AB為直徑的圓同時(shí)被直線l1:10x-5y-21=0與l2:10x-15y-33=0平分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,a7=4,a19=2a9.?dāng)?shù)列{bn}滿足bn=an22an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x),對(duì)任意的x∈(-
π
2
,
π
2
)滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式成立的是( 。
A、
3
f(-
π
3
)<f(-
π
6
)
B、f(-
π
6
)>
3
2
f(0)
C、f(
π
4
)>
2
f(
π
3
)
D、f(0)>
2
f(
π
4
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖平行四邊形ABCD中,∠DAB=60°,AB=2AD=2,M為邊CD的中點(diǎn),沿BM將△CBM折起使得平面BMC⊥平面ABMD.
(1)求四棱錐C-ADMB的體積;
(2)求折后直線AB與面AMC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=1,通項(xiàng)an與前n項(xiàng)和Sn之間滿足an=-2SnSn-1(n≥2),求an的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

底面是菱形的直平行六面體的高為12cm,兩條體對(duì)角線的長(zhǎng)分別為15cm和20cm,求底面邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinωx+acosωx滿足f(0)=
3
,且f(x)圖象的相鄰兩條對(duì)稱軸間的距離為π.
(1)求a與ω的值;
(2)若f(a)=1,a∈(-
π
2
π
2
),求cos(a-
12
)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案