已知函數(shù)f(x)=alnx+x2 (a為實(shí)常數(shù)).
(1)當(dāng)a=-4時(shí),求函數(shù)f(x)在[1,e]上的最大值及相應(yīng)的x值;
(2)當(dāng)x∈[1,e]時(shí),討論方程f(x)=0根的個(gè)數(shù).
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,根的存在性及根的個(gè)數(shù)判斷
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)把a(bǔ)=-4代入函數(shù)解析式,求出函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)的零點(diǎn)把給出的定義[1,e]分段,判出在各段內(nèi)的單調(diào)性,從而求出函數(shù)在[1,e]上的最大值及相應(yīng)的x值;
(2)把原函數(shù)f(x)=alnx+x2求導(dǎo),分a≥0和a<0討論打哦函數(shù)的單調(diào)性,特別是當(dāng)a<0時(shí),求出函數(shù)f(x)在[1,e]上的最小值及端點(diǎn)處的函數(shù)值,然后根據(jù)最小值和F(e)的值的符號(hào)討論在x∈[1,e]時(shí),方程f(x)=0根的個(gè)數(shù).
解答: 解:(1)當(dāng)a=-4時(shí),f(x)=-4lnx+x2,
函數(shù)的定義域?yàn)椋?,+∞).
f′(x)=-
4
x
+2x

令f'(x)=0得,x=
2
x=-
2
舍去.
x∈[1,
2
)
時(shí),f'(x)<0.
∴函數(shù)f(x)在[1,
2
)
上為減函數(shù),在(
2
,e]
上為增函數(shù),
由f(1)=-4ln1+12=1,f(e)=-4lne+e2=e2-4,
∴函數(shù)f(x)在[1,e]上的最大值為e2-4,相應(yīng)的x值為e;
(2)由f(x)=alnx+x2,得
f′(x)=
a
x
+2x

若a≥0,則在[1,e]上f′(x)>0,函數(shù)f(x)=alnx+x2在[1,e]上為增函數(shù),
由f(1)=1>0知,方程f(x)=0的根的個(gè)數(shù)是0;
若a<0,由f′(x)=0,得x=
-2a
2
或x=-
-2a
2
(舍去)
-2a
2
≤1,即-2≤a<0,f(x)=alnx+x2在[1,e]上為增函數(shù),
由f(1)=1>0知,方程f(x)=0的根的個(gè)數(shù)是0;
-2a
2
≥e,即a≤-2e2,f(x)=alnx+x2在[1,e]上為減函數(shù),
由f(1)=1,f(e)=alne+e2=e2+a≤-e2<0,
∴方程f(x)=0在[1,e]上有1個(gè)實(shí)數(shù)根;
若1<
-2a
2
<e,即-2e2<x<-2,
f(x)在[1,
-2a
2
)上為減函數(shù),在[
-2a
2
,e]上為增函數(shù),
由f(1)=1>0,f(e)=e2+a.
f(x)min=f(
-2a
2

=aln
-2a
2
+(
-2a
2
2
=
a
2
[ln(-
a
2
)-1]

當(dāng)-
a
2
<e,即-2e<a<-2時(shí),f(
-2a
2
)>0,方程f(x)=0的根的個(gè)數(shù)是0;
當(dāng)a=-2e時(shí),方程f(x)=0在[1,e]上的根的個(gè)數(shù)是1;
當(dāng)-e2≤a<-2e時(shí),f(
-2a
2
)<0,f(e)=a+e2≥0,方程f(x)=0的根的個(gè)數(shù)是2;
當(dāng)-2e2<a<-e2時(shí)f(
-2a
2
)<0,f(e)=a+e2<0,方程f(x)=0在[1,e]上的根的個(gè)數(shù)是1.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)求閉區(qū)間上的最值,考查了根的存在性及根的個(gè)數(shù)的判斷,考查了分類討論的數(shù)學(xué)思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了構(gòu)造函數(shù)求變量的取值范圍,此題是有一定難度題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線y=2x被橢圓
x2
8
+
y2
4
=1
截得的弦長(zhǎng)是(  )
A、
4
10
3
B、
4
10
9
C、
2
10
3
D、
16
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2+x-6y+m=0與直線x+2y-3=0相交于P、Q兩點(diǎn),若A(-2,0)且AP⊥AQ,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

ABCD是平行四邊形,已知點(diǎn)A(-1,3)和C(-3,2),點(diǎn)D在直線x-3y=1上移動(dòng),求點(diǎn)B的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+3x-10≤0}
(1)若集合B=[-2m+1,-m-1],且A∪B=A,求實(shí)數(shù)m的取值范圍;
(2)若集合B={x|-2m+1≤x≤-m-1},且A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求經(jīng)過兩圓C1:x2+y2=4,C2:(x-1)2+(y-2)2=1交點(diǎn),且被直線x+y-6=0平分的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式(lgx)2-lgx-2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某學(xué)校高三年級(jí)共800名男生中隨機(jī)抽取50名作為樣本測(cè)量身高.據(jù)測(cè)量,被測(cè)學(xué)生身高全部介于155cm和195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組[155,160)第二組[160,165);…第八組[190,195].下圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.
(Ⅰ)估計(jì)這所學(xué)校高三年級(jí)全體男生身高在180cm以上(含180cm)的人數(shù);
(Ⅱ)在上述樣本中從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為x,y,求滿足“|x-y|≤5”的事件的概率;
(Ⅲ)在上述樣本中從最后三組中任取3名學(xué)生參加學(xué);@球隊(duì),用ξ表示從第八組中取到的學(xué)生人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第二象限角,且cosα=-
1
3
,則tan2α的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案