如圖所示,正方體ABCD-A1B1C1D1中,EF是異面直線(xiàn)ACA1D的公垂線(xiàn),則EFBD1的關(guān)系是( )

 

  A.相交垂直          B.互相平行

  C.異面垂直          D.相交不垂直

答案:B
解析:

如圖所示,連結(jié)B1C,則B1CA1D,依題意,EFB1C,且EFAC,從而EF⊥平面AB1C

  連結(jié)BD,則BDBD1在平面AC上的射影,由于ACBD,那么BD1AC.同理BD1B1C.所以,BD1⊥平面AB1C

  ∴ EFBD1


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),G為DD1上一點(diǎn),且D1G:GD=1:2,AC∩BD=O,求證:平面AGO∥平面D1EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是正方體ADD1A1和ABCD的中心,G是C1C的中點(diǎn),設(shè)GF、C1F與AB所成的角分別為α、β,則α+β等于
π
2
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),G為DD1上一點(diǎn),且D1G:GD=1:2,AC∩BD=O,求證:平面AGO//平面D1EF.

 
 


查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方體ABCDA1B1C1D1的棱長(zhǎng)為1,點(diǎn)MAB上,且AMAB,點(diǎn)P在平面ABCD上,且動(dòng)點(diǎn)P到直線(xiàn)A1D1的距離的平方與P到點(diǎn)M的距離的平方差為1,在平面直角坐標(biāo)系xAy中,動(dòng)點(diǎn)P的軌跡方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年人教B版高中數(shù)學(xué)必修2 1.2點(diǎn) 線(xiàn) 面之間的位置關(guān)系練習(xí)卷(解析版) 題型:解答題

(12分)如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),G為DD1上一點(diǎn),且D1G:GD=1:2,AC∩BD=O,求證:平面AGO//平面D1EF.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案