10.直線l:y=x+m與橢圓$\frac{{x}^{2}}{4}$+y2=1交于A、B兩點,弦長AB為$\frac{4\sqrt{6}}{5}$,求直線l的方程.

分析 把y=x+m,代入x2+4y2=4,結合題設條件利用橢圓的弦長公式能求出m,得到直線方程.

解答 解:橢圓$\frac{{x}^{2}}{4}$+y2=1,即:x2+4y2=4
l:y=x+m,代入x2+4y2=4,
整理得5x2+8mx+4m2-4=0,
設A(x1,y1),B(x2,y2),
則x1+x2=-$\frac{8m}{5}$,x1x2=$\frac{4{m}^{2}-4}{5}$,
|AB|=$\sqrt{1+{1}^{2}}$•|x1-x2|
=$\sqrt{2}$•$\sqrt{({{x}_{1}+{x}_{2})}^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{2}$$\sqrt{{(-\frac{8m}{5})}^{2}-4×\frac{4{m}^{2}-4}{5}}$=$\frac{4\sqrt{6}}{5}$.
可得$\sqrt{5-{m}^{2}}=\sqrt{3}$
解得:m=$±\sqrt{2}$.
直線l:y=x$±\sqrt{2}$.

點評 本題考查橢圓弦長的求法,解題時要注意弦長公式,考查計算能力以及分析問題解決問題的能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.圓x2+y2-2x+2y=0的半徑為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若函數(shù)f(x)=(x2-cx+5)ex在區(qū)間[$\frac{1}{2}$,4]上單調遞增,則實數(shù)c的取值范圍是( 。
A.(-∞,2]B.(-∞,4]C.(-∞,8]D.[-2,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知正四面體棱長為a,求正四面體內切球體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.曲線y=ex在x=$\frac{1}{2}$1n3處的切線的傾斜角是$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若等差數(shù)列的第一、二、三項依次是$\frac{1}{x+1}$、$\frac{5}{6x}$、$\frac{1}{x}$則數(shù)列的公差d是( 。
A.$\frac{1}{12}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知α=$\frac{23}{5}$π.
(1)把α寫成2kπ+β(k∈Z,β∈[0,2π))的形式;
(2)求θ,使θ與α的終邊相同,且θ∈(-4π,-2π).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知正六棱臺的上、下底面邊長分別為2、8,側棱長等于9,求這個棱臺的高和斜高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設 P點在圓x2+(y-2)2=1上移動,點Q在橢圓$\frac{x^2}{9}+{y^2}=1$上移動,則|PQ|的最大值是1+$\frac{3\sqrt{6}}{2}$.

查看答案和解析>>

同步練習冊答案