(08年銀川一中二模)(12分) 已知某幾何體的三視圖如下圖所示,其中左視圖是邊長為2的正三角形,主視圖是矩形且AA1=3,設D為AA1的中點。

   (1)作出該幾何體的直觀圖并求其體積;

   (2)求證:平面BB1C1C⊥平面BDC1;

   (3)BC邊上是否存在點P,使AP//平面BDC1?若不存在,說明理由;若存在,證明你的結論。

解析:(1)解:由題意可知該幾何體為直三棱柱,直觀圖略。

∵幾何體的底面積                …………3分

   (2)證明:連結B1C交BC1于E點,則E為BC1、B1C的中點,連結DE。

∵AD=A1D,AB=A1C1,∠BAD=∠DA1C1=90°

∴△ABD≌△DA1C1,∴BD=DC1

∴DE⊥BC1。                                                                                     …………5分

同理DE⊥B1C

又∵B1C∩BC1=E,∴DE⊥面BB1C1C,

又∵DE面BDC1,∴面BDC1⊥面BB1C1C                                         …………7分

   (3)解:取BC的中點P,連結AP,則AP∥平面BDC1                      

證明:連結PE,則PE平行且等于AD,

∴四邊形APED為平行四邊形,∴AP∥DE,又DE平面BDC1,AP平面BDC1

∴AP∥平面BDC1.                                 …………12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年銀川一中二模理) (12分)

設函數(shù)f(x)=(x2-x-)ea x  (a>0,a∈R))

   (1)當a=2時,求函數(shù)f(x)的單調區(qū)間

  (2)若不等式f(x)+≥0對x∈(0,+∞)恒成立,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年銀川一中二模理)設方程,(θ為參數(shù)).表示的曲線為C,

(1)求曲線C上的動點到原點O的距離的最小值

(2)點P為曲線C上的動點,當|OP|最小時(O為坐標原點),求點P的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年銀川一中二模理)  設函數(shù)f(x)=|2x-1|+x+3,  

(1)  解不等式f(x)≤5,

(2)  求函數(shù)y=f(x)的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年銀川一中二模文) (12分)已知函數(shù)

   (1)若a,b都是從0,1,2,3,4五個數(shù)中任取的一個數(shù),求上述函數(shù)有零點的概率.

   (2)若a,b都是從區(qū)間[0,4]任取的一個數(shù),求f(1)>0成立時的概率.

查看答案和解析>>

同步練習冊答案