(2012•嘉定區(qū)三模)系數(shù)矩陣為
.
21
32
.
,解為
x
y
=
1
2
的一個(gè)線性方程組是
2x+y=4
3x+2y=7
2x+y=4
3x+2y=7
分析:先根據(jù)系數(shù)矩陣,寫出線性方程組,再利用方程組的解,求出待定系數(shù),從而可得線性方程組.
解答:解:可設(shè)線性方程組為
21
32
x
y
=
m
n

由于方程組的解是
x
y
=
1
2
,
m
n
=
4
7

∴所求方程組為
2x+y=4
3x+2y=7
,
故答案為:
2x+y=4
3x+2y=7
點(diǎn)評:本題的考點(diǎn)是二元一次方程組的矩陣形式,主要考查待定系數(shù)法求線性方程組,應(yīng)注意理解方程組解的含義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•嘉定區(qū)三模)已知?jiǎng)訄A圓心在拋物線y2=4x上,且動(dòng)圓恒與直線x=-1相切,則此動(dòng)圓必過定點(diǎn)
(1,0)
(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•嘉定區(qū)三模)下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•嘉定區(qū)三模)在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是
x=t
y=
3
t
(l為參數(shù)),以O(shè)x的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cosθ,則圓C上的點(diǎn)到直線l距離的最大值是
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•嘉定區(qū)三模)設(shè)集合A={x|x<1,x∈R},B={x|x2<4,x∈R},則A∩B=
{x|-2<x<1}
{x|-2<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•嘉定區(qū)三模)設(shè)a、b∈R,i為虛數(shù)單位,若(a+i)i=b+i,則復(fù)數(shù)z=a+bi的模為
2
2

查看答案和解析>>

同步練習(xí)冊答案