橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,橢圓C與x軸正半軸交于A點(diǎn),與y軸正半軸交于B(0,2),且
BF
BA
=4
2
+4,則橢圓C的方程為( 。
A、
x2
4
+
y2
2
=1
B、
x2
6
+
y2
4
=1
C、
x2
8
+
y2
4
=1
D、
x2
16
+
y2
8
=1
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由已知得
b=2
ac=4
2
a2=b2+c2
,由此能求出橢圓C的方程.
解答: 解:由已知得F(c,0),A(a,0),B(0,2),
BF
BA
=(c,-2)•(a,-2)=ac+4=4
2
+4,
b=2
ac=4
2
a2=b2+c2
,
解得a2=8,b2=4,
∴橢圓C的方程為
x2
8
+
y2
4
=1.
故選:C.
點(diǎn)評(píng):本題考查橢圓方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=Asin(ωx+ϕ)+B(A>0,ω>0,|φ|<
π
2
)上的一個(gè)最高點(diǎn)的坐標(biāo)為(
π
8
,2),此點(diǎn)相鄰的一個(gè)對(duì)稱中心坐標(biāo)為(
8
1
2
),
(1)求函數(shù)f(x)的表達(dá)式.
(2)用“五點(diǎn)作圖法”畫出此函數(shù)f(x)在[-
π
8
,
8
]上圖象.
(3)如何由函數(shù)f(x)的圖象通過適當(dāng)?shù)淖儞Q得到函數(shù)y=sinx的圖象,寫出變換過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)+m的最大值為4,最小值為-2,兩條對(duì)稱軸間的最短距離為
π
2
,直線x=
π
6
是其圖象的一條對(duì)稱軸,則符合條件的一個(gè)解析式是( 。
A、y=6sin(2x+
6
B、y=6sin(4x+
6
C、y=3sin(4x-
π
6
)+1
D、y=3sin(2x-
6
)+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈R,向量
a
=(x,1),
b
=(1,-2),且
a
b
,則|
a
+
b
|=(  )
A、
5
B、2
5
C、10
D、
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式組
y≤x
y≥-x
x≤a
表示的平面區(qū)域的面積為9,點(diǎn)P(x,y)在所給平面區(qū)域內(nèi),則z=3x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A(x,y),B(-1,0),C(1,0),若∠A=
π
2
,則點(diǎn)A的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是幾何體的三視圖,那么這個(gè)幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=8,BC=16,將矩形ABCD沿EF折疊,使點(diǎn)C與點(diǎn)A重合,則折痕EF的長(zhǎng)為( 。
A、6
B、12
C、2
5
D、4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中滿足“定義域的任意x都有f(-x)=f(x),且當(dāng)0<x1<x2,都有f(x1)<f(x2)”的是( 。
A、y=
1
x
B、y=e-x
C、y=-x2+1
D、y=lg|x|

查看答案和解析>>

同步練習(xí)冊(cè)答案