16.某種產(chǎn)品具有一定時(shí)效性,在這個(gè)時(shí)期內(nèi),由市場(chǎng)調(diào)查可知:每件產(chǎn)品獲利a元,在不作廣告宣傳的前提下可賣出b件;若作廣告宣傳,廣告費(fèi)為n+1(n∈N)千元時(shí)比廣告費(fèi)為n千元時(shí)多賣出$\frac{{2}^{n+1}}$件,設(shè)作n(n∈N)千元廣告時(shí)銷售量為Cn件.
(1)試寫出銷售量Cn與n(n∈N)的函數(shù)關(guān)系式.
(2)當(dāng)a=10,b=4000時(shí),廠家應(yīng)作幾千元廣告,才能獲取最大利潤(rùn)?

分析 (1)根據(jù)在不作廣告宣傳的前提下可賣出b件;若作廣告宣傳,廣告費(fèi)為n+1(n∈N)千元時(shí)比廣告費(fèi)為n千元時(shí)多賣出$\frac{{2}^{n+1}}$件,直接列式;
(2)b=4000時(shí),Cn=4000(2-$\frac{1}{{2}^{n}}$),設(shè)獲利為Tn,則有Tn=Cn•10-1000n=40000(2-$\frac{1}{{2}^{n}}$)-1000n欲使Tn最大,根據(jù)數(shù)列的單調(diào)性可得$\left\{\begin{array}{l}{{T}_{n}≥{T}_{n+1}}\\{{T}_{n}≥{T}_{n-1}}\end{array}\right.$,代入結(jié)合n為正整數(shù)解不等式可求n,進(jìn)而可求最大利潤(rùn).

解答 解:(1)廣告費(fèi)為1千元時(shí),Cn=b+$\frac{2}$;2千元時(shí),Cn=b+$\frac{2}$+$\frac{{2}^{2}}$;
…n千元時(shí),Cn=b+$\frac{2}$+$\frac{{2}^{2}}$+…+$\frac{{2}^{n}}$=b(2-$\frac{1}{{2}^{n}}$);
(2)b=4000時(shí),Cn=4000(2-$\frac{1}{{2}^{n}}$),設(shè)獲利為Tn,則有Tn=Cn•10-1000n=40000(2-$\frac{1}{{2}^{n}}$)-1000n
欲使Tn最大,則$\left\{\begin{array}{l}{{T}_{n}≥{T}_{n+1}}\\{{T}_{n}≥{T}_{n-1}}\end{array}\right.$,得n=5,此時(shí)Tn=7875.
即該廠家應(yīng)生產(chǎn)7875件產(chǎn)品,做5千元的廣告,能使獲利最大.

點(diǎn)評(píng) 本題主要考查了數(shù)列的疊加求解通項(xiàng)公式,利用數(shù)列的單調(diào)性求解數(shù)列的最大(小)項(xiàng),解題中要注意函數(shù)思想在解題中的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知等差數(shù)列{an}中,a3=8,a6=17.
(1)求a1,d;
(2)設(shè)bn=an+2n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.2015年7月9日21時(shí)15分,臺(tái)風(fēng)“蓮花”在我國(guó)廣東省陸豐市甲東鎮(zhèn)沿海登陸,給當(dāng)?shù)厝嗣裨斐闪司薮蟮呢?cái)產(chǎn)損失,適逢暑假,小張調(diào)查了當(dāng)?shù)啬承^(qū)的100戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如圖頻率分布直方圖(圖1):

(Ⅰ)臺(tái)風(fēng)后居委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小張調(diào)查的100戶居民捐款情況如表格,在表格空白處填寫正確數(shù)字,并說(shuō)明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
(Ⅱ)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量受災(zāi)居民中,采用隨機(jī)抽樣方法每次抽取1戶居民,抽取3次,記被抽取的3戶居民中自身經(jīng)濟(jì)損失超過(guò)4000元的人數(shù)為ξ.若每次抽取的結(jié)果是相互獨(dú)立的,求ξ的分布列,期望E(ξ)和方差D(ξ).
經(jīng)濟(jì)損失不超過(guò)
4000元
經(jīng)濟(jì)損失超過(guò)
4000元
合計(jì)
捐款超過(guò)
500元
60
捐款不超
過(guò)500元
10
合計(jì)
附:臨界值表
P(K2≥k)0.100.050.025
    k2.7063.8415.024
隨機(jī)量變${K^2}=\frac{{(a+b+c+d){{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,長(zhǎng)方形ABCD,M,N分別為AB,AD上異于點(diǎn)A的兩點(diǎn),現(xiàn)把△AMN沿著MN翻折,記AC與平面BCD所成的角為θ1,直線AC與直線MN所成的角為θ2,則θ1與θ2的大小關(guān)系是( 。
A.θ12B.θ1>θ2C.θ1<θ2D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=log2$\frac{2x-1}{x+2}$.
(1)求f(x)的定義域A;
(2)若函數(shù)g(x)=3x2+6x+2在[-1,a](a>-1)內(nèi)的值域?yàn)锽,且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知四棱錐P-ABCD中,底面ABCD為矩形,且中心為O,AB=BO=1,PA=PB=PC=PD=2,則該四棱錐的外接球的體積為$\frac{32\sqrt{3}}{27}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖,在△ABC中,點(diǎn)D在邊BC上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{{\sqrt{2}}}{10}$.若△ABD的面積為7,則AB=$\sqrt{37}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.(x-$\frac{a}{x}$)(1-$\sqrt{x}$)6的展開式中x的系數(shù)是31,則常數(shù)a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)向量$\overrightarrow a$=(-1,1),$\overrightarrow b$=(2,t),且$\overrightarrow a$•$\overrightarrow b$=-1,則實(shí)數(shù)t=(  )
A.0B.-1C.-2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案