7.已知△ABC是邊長為2的等邊三角形,P為平面ABC內(nèi)一點(diǎn),則$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)的最小值是(  )
A.-2B.-$\frac{3}{2}$C.-$\frac{4}{3}$D.-1

分析 根據(jù)條件建立坐標(biāo)系,求出點(diǎn)的坐標(biāo),利用坐標(biāo)法結(jié)合向量數(shù)量積的公式進(jìn)行計(jì)算即可.

解答 解:建立如圖所示的坐標(biāo)系,以BC中點(diǎn)為坐標(biāo)原點(diǎn),
則A(0,$\sqrt{3}$),B(-1,0),C(1,0),
設(shè)P(x,y),則$\overrightarrow{PA}$=(-x,$\sqrt{3}$-y),$\overrightarrow{PB}$=(-1-x,-y),$\overrightarrow{PC}$=(1-x,-y),
則$\overrightarrow{PA}$•($\overrightarrow{PB}$+$\overrightarrow{PC}$)=2x2-2$\sqrt{3}$y+2y2=2[x2+(y-$\frac{\sqrt{3}}{2}$)2-$\frac{3}{4}$]
∴當(dāng)x=0,y=$\frac{\sqrt{3}}{2}$時,取得最小值2×(-$\frac{3}{4}$)=-$\frac{3}{2}$,
故選:B

點(diǎn)評 本題主要考查平面向量數(shù)量積的應(yīng)用,根據(jù)條件建立坐標(biāo)系,利用坐標(biāo)法是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若雙曲線x2-$\frac{{y}^{2}}{m}$=1的離心率為$\sqrt{3}$,則實(shí)數(shù)m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,正方體ABCD-A1B1C1D1的棱長為a,在此幾何體中,給出下面四個結(jié)論:①異面直線A1D與AB1所成角為60°;②直線A1D與BC1垂直;③直線A1D與BD1平行;④三棱錐A-A1CD的體積為$\frac{1}{6}{a^3}$,其中正確的結(jié)論個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每隔30min從該生產(chǎn)線上隨機(jī)抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗(yàn)員在一天內(nèi)依次抽取的16個零件的尺寸:
抽取次序12345678
零件尺寸9.9510.129.969.9610.019.929.9810.04
抽取次序910111213141516
零件尺寸10.269.9110.1310.029.2210.0410.059.95
經(jīng)計(jì)算得 $\overline{x}$=$\frac{1}{16}$$\sum_{i=1}^{16}$xi=9.97,s=$\sqrt{\frac{1}{16}\sum_{i=1}^{16}({x}_{i}-\overline{x})^{2}}$=$\sqrt{\frac{1}{16}(\sum_{i=1}^{16}{{x}_{i}}^{2}-16{\overline{x}}^{2})$≈0.212,$\sqrt{\sum_{i=1}^{16}(i-8.5)^{2}}$≈18.439,$\sum_{i=1}^{16}$(xi-$\overline{x}$)(i-8.5)=-2.78,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
(1)求(xi,i)(i=1,2,…,16)的相關(guān)系數(shù)r,并回答是否可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變。ㄈ魘r|<0.25,則可以認(rèn)為零件的尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變小).
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在($\overline{x}$-3s,$\overline{x}$+3s)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(。⿵倪@一天抽檢的結(jié)果看,是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?
(ⅱ)在($\overline{x}$-3s,$\overline{x}$+3s)之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計(jì)這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值與標(biāo)準(zhǔn)差.(精確到0.01)
附:樣本(xi,yi)(i=1,2,…,n)的相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}\sqrt{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,$\sqrt{0.008}$≈0.09.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.(1+$\frac{1}{x^2}$)(1+x)6展開式中x2的系數(shù)為( 。
A.15B.20C.30D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y+3≤0}\\{3x+y+5≤0}\\{x+3≥0}\end{array}\right.$,則z=x+2y的最大值是( 。
A.0B.2C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知(1+3x)n的展開式中含有x2的系數(shù)是54,則n=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-x+3,x≤1}\\{x+\frac{2}{x},x>1}\end{array}$,設(shè)a∈R,若關(guān)于x的不等式f(x)≥|$\frac{x}{2}$+a|在R上恒成立,則a的取值范圍是(  )
A.[-$\frac{47}{16}$,2]B.[-$\frac{47}{16}$,$\frac{39}{16}$]C.[-2$\sqrt{3}$,2]D.[-2$\sqrt{3}$,$\frac{39}{16}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個焦點(diǎn),若在雙曲線上存在點(diǎn)P滿足2|$\overrightarrow{P{F}_{1}}+\overrightarrow{P{F}_{2}}$|≤|$\overrightarrow{{F}_{1}{F}_{2}}$|,則雙曲線C的離心率的取值范圍是( 。
A.(1,$\sqrt{2}$]B.(1,2]C.[$\sqrt{2}$,+∞)D.[2,+∞)

查看答案和解析>>

同步練習(xí)冊答案