已知函數(shù)f(x)=
x-1
x+2
,則下列說(shuō)法正確的是( 。
A、f(x)在R上為增函數(shù)
B、f(x)在(-∞,-2)上為減函數(shù),在(-2,+∞)上也為減函數(shù)
C、f(x)在(-∞,-2)上為減函數(shù),在(-2,+∞)上為增函數(shù)
D、f(x)在(-∞,-2)上為增函數(shù),在(-2,+∞)上為增函數(shù)
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將f(x)變成:f(x)=1-
3
x+2
,所以根據(jù)反比例函數(shù)或單調(diào)性的定義即可判斷f(x)的單調(diào)性,從而找出正確選項(xiàng).
解答: 解:f(x)=
x+2-3
x+2
=1-
3
x+2
;
根據(jù)單調(diào)性的定義或反比例函數(shù)的單調(diào)性即知f(x)在(-∞,-2),(-2,+∞)上為增函數(shù).
故選D.
點(diǎn)評(píng):考查函數(shù)單調(diào)性的定義,以及反比例函數(shù)的單調(diào)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sinx,cosx),
b
=(6sinx+cosx,7sinx-2cosx).設(shè)函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的最大值單遞增區(qū)間;
(Ⅱ)在角A為銳角的△ABC中,角A、B、C的對(duì)邊分別為a、b、c,f(A)=6,且△ABC的面積為3,b+c=2+3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
x-y+1≥0
x+y-1≤0
y≥0
,則
y
x+2
的最大值為( 。
A、0
B、
1
2
C、2
D、無(wú)最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l垂直于直線2x-3y+5=0,則直線l的一個(gè)法向量
n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m>n,a>b>0,比較ambn與anbm的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ln(1-x)-ln(1+x).
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性,并證明;
(3)用定義證明函數(shù)f(x)在定義域內(nèi)單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式組
2x+1≥0
x+a>0
2x+1<(x+a)2
的解集為{x|x>m},則m的最小值為
 
,此時(shí)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合M={0,1,2}的子集為(  )
A、{0},{1},{2}
B、{0},{1},{2},{1,2}
C、{0},{1},{2},{1,2}
D、{0},{1},{2},{1,2},{0,1},{0,2},{0,1,2},∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):(1+
3
tan15°
1-sin215°

查看答案和解析>>

同步練習(xí)冊(cè)答案