【題目】已知拋物線(xiàn)經(jīng)過(guò)點(diǎn).

1)寫(xiě)出拋物線(xiàn)的標(biāo)準(zhǔn)方程及其準(zhǔn)線(xiàn)方程,并求拋物線(xiàn)的焦點(diǎn)到準(zhǔn)線(xiàn)的距離;

2)過(guò)點(diǎn)且斜率存在的直線(xiàn)與拋物線(xiàn)交于不同的兩點(diǎn),,且點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,直線(xiàn)軸交于點(diǎn).

i)求點(diǎn)的坐標(biāo);

ii)求面積之和的最小值.

【答案】1,,焦點(diǎn)到準(zhǔn)線(xiàn)的距離為1; 2)(i,(ii.

【解析】

1)由拋物線(xiàn)經(jīng)過(guò)點(diǎn),求得拋物線(xiàn)的方程為,再結(jié)合拋物線(xiàn)的幾何性質(zhì),即可求解;

2)(i)設(shè)過(guò)點(diǎn)的直線(xiàn),聯(lián)立方程組,求得,再由直線(xiàn)的方程,,即可求解的坐標(biāo);

ii)利用三角形的面積公式,求得面積之和的表示,結(jié)合基本不等式,即可求解.

1)由題意,拋物線(xiàn)經(jīng)過(guò)點(diǎn),即,

解得,所以?huà)佄锞(xiàn)的方程為,

拋物線(xiàn)的準(zhǔn)線(xiàn)方程為,拋物線(xiàn)的焦點(diǎn)到準(zhǔn)線(xiàn)的距離為1.

2)(i)設(shè)過(guò)點(diǎn)的直線(xiàn),

代入拋物線(xiàn)的方程,可得,

設(shè)直線(xiàn)與拋物線(xiàn)的交點(diǎn),且,

所以直線(xiàn)的方程為,

,即,

,可得,

所以,所以,所以,

ii)如圖所示,可得,

,

所以面積之和為:

,

當(dāng)且僅當(dāng)時(shí),即時(shí)等號(hào)成立,

所以面積之和的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)ab,c為實(shí)數(shù),fx=x+a)(x2+bx+c),gx=ax+1)(cx2+bx+1).記集合S={x|fx=0x∈R},T={x|gx=0,x∈R}.若{S}{T}分別為集合S,T 的元素個(gè)數(shù),則下列結(jié)論不可能的是( )

A.{S}=1{T}=0B.{S}=1{T}=1C.{S}=2{T}=2D.{S}=2{T}=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解廣告投入對(duì)銷(xiāo)售收益的影響,在若干地區(qū)各投入4萬(wàn)元廣告費(fèi)用,并將各地的銷(xiāo)售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開(kāi)始計(jì)數(shù)的.

1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

2)試估計(jì)該公司在若干地區(qū)各投入4萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷(xiāo)售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

3)該公司按照類(lèi)似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入(單位:萬(wàn)元)

1

2

3

4

5

銷(xiāo)售收益(單位:萬(wàn)元)

2

3

3

7

由表中的數(shù)據(jù)顯示,之間存在著線(xiàn)性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線(xiàn)方程.(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】年?yáng)|京夏季奧運(yùn)會(huì)將設(shè)置米男女混合泳接力這一新的比賽項(xiàng)目,比賽的規(guī)則是:每個(gè)參賽國(guó)家派出22女共計(jì)4名運(yùn)動(dòng)員比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿米且由一名運(yùn)動(dòng)員完成, 每個(gè)運(yùn)動(dòng)員都要出場(chǎng). 現(xiàn)在中國(guó)隊(duì)確定了備戰(zhàn)該項(xiàng)目的4名運(yùn)動(dòng)員名單,其中女運(yùn)動(dòng)員甲只能承擔(dān)仰泳或者自由泳,男運(yùn)動(dòng)員乙只能承擔(dān)蝶泳或自由泳,剩下的男女各一名運(yùn)動(dòng)員則四種泳姿都可以上,那么中國(guó)隊(duì)共有( )種兵布陣的方式.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),我國(guó)自主研發(fā)的長(zhǎng)征系列火箭的頻頻發(fā)射成功,標(biāo)志著我國(guó)在該領(lǐng)域已逐步達(dá)到世界一流水平.火箭推進(jìn)劑的質(zhì)量為,去除推進(jìn)劑后的火箭有效載荷質(zhì)量為,火箭的飛行速度為,初始速度為,已知其關(guān)系式為齊奧爾科夫斯基公式:,其中是火箭發(fā)動(dòng)機(jī)噴流相對(duì)火箭的速度,假設(shè),,是以為底的自然對(duì)數(shù),,.

1)如果希望火箭飛行速度分別達(dá)到第一宇宙速度、第二宇宙速度、第三宇宙速度時(shí),求的值(精確到小數(shù)點(diǎn)后面1位).

2)如果希望達(dá)到,但火箭起飛質(zhì)量最大值為,請(qǐng)問(wèn)的最小值為多少(精確到小數(shù)點(diǎn)后面1位)?由此指出其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

若函數(shù)處的切線(xiàn)平行于直線(xiàn),求實(shí)數(shù)a的值

)判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);

)在()的條件下,若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】牛頓迭代法(Newton's method)又稱(chēng)牛頓拉夫遜方法(NewtonRaphsonmethod),是牛頓在17世紀(jì)提出的一種近似求方程根的方法.如圖,設(shè)的根,選取作為初始近似值,過(guò)點(diǎn)作曲線(xiàn)的切線(xiàn)軸的交點(diǎn)的橫坐標(biāo),稱(chēng)的一次近似值,過(guò)點(diǎn)作曲線(xiàn)的切線(xiàn),則該切線(xiàn)與軸的交點(diǎn)的橫坐標(biāo)為,稱(chēng)的二次近似值.重復(fù)以上過(guò)程,直到的近似值足夠小,即把作為的近似解.設(shè)構(gòu)成數(shù)列.對(duì)于下列結(jié)論:

;

;

.

其中正確結(jié)論的序號(hào)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)內(nèi)有一點(diǎn),過(guò)的兩條直線(xiàn),分別與拋物線(xiàn)交于,兩點(diǎn),且滿(mǎn)足,,已知線(xiàn)段的中點(diǎn)為,直線(xiàn)的斜率為.

(1)求證:點(diǎn)的橫坐標(biāo)為定值;

(2)如果,點(diǎn)的縱坐標(biāo)小于3,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某產(chǎn)品16月份銷(xiāo)售量及其價(jià)格進(jìn)行調(diào)查,其售價(jià)x和銷(xiāo)售量y之間的一組數(shù)據(jù)如下表所示:

月份i

1

2

3

4

5

6

單價(jià)(元)

9

9.5

10

10.5

11

8

銷(xiāo)售量(件)

11

10

8

6

5

14

1)根據(jù)15月份的數(shù)據(jù),求出y關(guān)于x的回歸直線(xiàn)方程;

2)若由回歸直線(xiàn)方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5元,則認(rèn)為所得到的回歸直線(xiàn)方程是理想的,試問(wèn)所得到的回歸直線(xiàn)方程是否理想?

3)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)售量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是2.5/件,為獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案